27C010, 27C011 EPROM From a datasheet in the INTEL-Databook MEMORY 1990: 27C010 is a normal 128K x 8 EPROM, it has the 32 Pin Dual in Line as the most standard EPROMS available from 256K to 8Mbit. 27C011 is a Page Adressed 8 x 16K x 8 EPROM. 27C011 has 28 pins: 1 : Vpp = /RST 2 : A12 3 : A7 4 : A6 5 : A5 6 : A4 7 : A3 8 : A2 9 : A1 10 : A0 11 : D0 12 : D1 13 : D2 14 : Gnd 15 : D3 16 : D4 17 : D5 18 : D6 19 : D7 20 : /CE 21 : A10 22 : /OE 23 : A11 24 : A9 25 : A8 26 : A13 27 : /PGM = /WE 28 : Vcc __________________________________
Without guaranty! Mistakes are possible. Please ask via email if you find a strange value!
__________________________________
27CX321 4096 x 8 CMOS UV EPROM: Pins : 1 : A7 2 : A6 3 : A5 4 : A4 5 : A3 6 : A2 7 : A1 8 : A0 9 : Q0 10: Q1 11: Q2 12: Gnd 13: Q3 14: Q4 15: Q5 16: Q6 17: Q7 18: CS2 = Chip Select und /PowerDown 19: A11 20: /CS1 = /Chip Select 21: A10 22: A9 23: A8 14: Vcc Adress- Pins: A0...A3 : Columns A4...A11: Rows Nach dem Löschen sind die bits undefiniert. ALLE bits müssen daher programmiert werden. Wie, steht auf dem 4-seitigen Datenblatt leider nicht erklärt. Beachtenswerterweise finde ich aber eine Cross-Reference List: AM27S43 (AMD) MB 7142 (Fujitsu) 63 S 3281 (MMI) DM87S321 (NSC) N82 HS321 (Philips) __________________________________
Alle Angaben ohne Garantie. Fehler beim Abschreiben sind möglich. Wenn Sie seltsame Werte entdecken, scheuen Sie sich nicht, per email nachzufragen!
__________________________________
MM74C151 8-channel Multiplexer with true output and complement output driving 2 LPTTL loads Strobe input forces the true output to LOW and the complement output to HIGH. On chip binary decoding: Example: Inputs C,B,A = 111 connects the input D7 to the output Y. (CMOS, data nearly Family 4000A) Pins: 1 : D3 2 : D2 3 : D1 4 : D0 5 : output Y 6 : output W = /Y 7 : Strobe 8 : Gnd 9 : C 10: B 11: A 12: D7 13: D6 14: D5 15: D4 16: Vcc = +3... +15V, max +18V __________________________________
Without guaranty! Mistakes are possible. Please ask via email if you find a strange value!
__________________________________
MM74C915 7-Segment to BCD Converter National Semiconductor Pins: 1 = d Segment Input 2 = e 3 = f 4 = g 5 = Error Output 6 = /OE 7 = A = Q0 8 = B = Q1 9 = Gnd 10= c = Q2 11= D = Q3 12= Latch Enable 13= Minus Output 14= Invert /Non-Invert Control 15= a Segment Input 16= b 17= c 18= Vcc = 3V to 15V (max 18V) Outputs 1 TTL load fan out 7-Segment identification: a __ f b | | g -- e c | | d -- Outputs at Segments 0001 at fe OR bc 0110 at fgecd OR afgecd 1001 at afbgc OR afbgcd 1111 at all blank Error = 1 at all others including minus Minus = 1 at Segment g Characteristics as usual for the normal CMOS4000 Family. The datasheet has no details for the Decoding Logic. But I think, you can replace it by a PROM: If the 7-segment input signal (coming e.g. from a LED-Driver for a common cathode LED display), is 1111111 for the displayed number 8 this is used as the highest PROM address. If all segment inputs are at low level, 0000000 for a Blank, this is the first PROM address. For the most adresses there is no usable BCD-output from the 4 PROM Outputs. In this case the Output5 named ERROR is high. If abcdefg = 0000001 the Output6 named minus is high. You need a PROM having >= 7 adress inputs and >= 6 bit outputs if you wish to replace the 74C915. If the LED Driver has active high outputs for a common cathode LED display, use the following truth table: ( x = 3-State at high resistance, see below) displayed abcdefg BCD-error-minus number PROM Outputs blank 0000000 1 1 1 1 0 0 - 0000001 x x x x 1 1 (minus) ' 0000010 x x x x 1 0 '- 0000011 x x x x 1 0 , 0000100 x x x x 1 0 ,- 0000101 x x x x 1 0 1 0000110 0 0 0 1 0 0 and so on. For all adresses x x x x 1 0 except: 1 0000110 0 0 0 1 0 0 1 1) 0110000 0 0 0 1 0 0 2 1101101 0 0 1 0 0 0 3 1111001 0 0 1 1 0 0 4 0110011 0 1 0 0 0 0 5 1011011 0 1 0 1 0 0 6 1011111 0 1 1 0 0 0 6 1) 0011111 0 1 1 0 0 0 7 1110000 0 1 1 1 0 0 8 1111111 1 0 0 0 0 0 9 1111011 1 0 0 1 0 0 9 1) 1110011 1 0 0 1 0 0 1) for the displayed numbers 1, 6 and 9 there are 2 possible symbols! __________________________________
Without guaranty! Mistakes are possible. Please ask via email if you find a strange value!
__________________________________
MM74C946 4-1/2 Digit Counter/ Decoder/ Driver for LCD Displays
From a NATIONAL SEMICONDUCTOR advance Information datasheet:
Pins:
1 : Vcc = +3V ... +6V ( absolute max 6.5 V )
2 : E1
3 : G1
4 : F1
5 : Backplane Output (If Pin36 = grounded: Backplane wave
input from external oszillator)
6 : A2
7 : B2
8 : C2
9 : D2
10 : E2
11 : G2
12 : F2
13 : A3
14 : B3
15 : C3
16 : D3
17 : E3
18 : G3
19 : F3
20 : A4
21 : B4
22 : C4
23 : D4
24 : E4
25 : G4
26 : F4
27 : 1/2 DIGIT goes high at 9999>0000, is high until /Reset
28 : CARRY = high for one clock periode at 9999
29 : LZI Leading Zero Input, high = zero blanking
30 : LZO Leading Zero Outp.,goes high if counter=zero AND LZI
31 : Enable, /Halt
32 : Clock, advances counter on negative edge
33 : /Reset
34 : Store, Latch
35 : Gnd
36 : Oszillator, normally open
(Cap. to Gnd for lower clock frequ.)
37 : A1
38 : B1
39 : C1
40 : D1
Segment Identification: Non-multiplexed LCD
A
F B
G
E C
D
Internal Oszillator 16 kHz divided by 128-> Backplane Driver.
(typ 125 Hz)
Clock Input:
Positive Going Threshold Voltage at Vcc=5V : typ 3.3 V
Negative... : typ 1.8 V
Hysteresis : typ 1.5 V
Max Clock Frequency : typ 2 MHz
Because of the advance datasheet all values in the
AC Characteristics table are left open.
Segment Outputs:( 1/2Digit Output)
Source : 1.9 mA ( 3.8 mA)
Sink : 1.6 mA ( 3.2 mA)
Backplane Output :
Source 16 mA
Sink : 13 mA
Cascading ( 8 Digit Counter ):
Ripple Carry cascading:
Count Input to Clock of LSD(Master, because Pin36= open);
Carry of Master to Clock of MSD(Slave, Pin36= Gnd);
Count Enable to both Enable Inputs;
Synchronous Cascading:
Count Input to both Clock Inputs;
Count Enable to Enable of Master;
Carry of Master to Enable of Slave;
For all:
Backplane Output(Master) to Backplane(LCD) and
Backplane Input(Slave);
/Reset and Store to Master and Slave;
LZO(Slave) to LZI(Master);
__________________________________
Without guaranty! Mistakes are possible. Please ask via email if you find a strange value!
__________________________________
74F412, 432 Multi-Mode Buffered Latch with TS-Outputs
From datasheets in the databook FAST 1988 by
NATIONAL SEMICONDUCTOR.
74F412 has noninverting outputs Q0...Q7.
74F432 has inverting outputs /Q0.../Q7
Functional equivalent of the Intel 8212.
Pins (DIL24):
1 = /S1
2 = M = Mode Control
3 = D0
4 = output0
5 = D1
6 = output1
7 = D2
8 = output2
9 = D3
10 = output3
11 = STB = Strobe
12 = Gnd
13 = S2
14 = /CLR = /Clear
15 = output4
16 = D4
17 = output5
18 = D5
19 = output6
20 = D6
21 = output7
22 = D7
23 = /INT = /Interrupt-Output
24 = Vcc
For LCC28 or PLCC28 Pin 1, 8, 15 and 22 are not connected.
Pin 2/LCC = Pin1/DIL and so on.
Data Latches Function Table:
Function /CLR M /S1 S2 STB DataIn DataOut
Clear L H H X X X L
L L L H L X L
De-select X L X L X X Z = High Impedance
X L H X X X Z
Hold H H H L X X Q0 ( /Q0 )
H L L H L X Q0 ( /Q0 )
Data Bus H H L H X L L
H H L H X H H
H L L H H L L
H L L H H H H
Status Flip-Flop Function Table:
/CLR /S1 S2 STB /INT
L H X X H
L X L X H
H X X low to high L
H L H X L
__________________________________
Without guaranty! Mistakes are possible. Please ask via email if you find a strange value!
__________________________________
74HC90 Zähler Aus einem vorläufigen Datenblatt von Motorola Als die HCMOS- Serie auf den Markt kam, war der TTL7490 schon veraltet. Deshalb hat es auch der 74HC90 nie richtig in die Datenbücher der HC- Familie geschafft. Ich habe ein vorläufiges Datenblatt von MOTOROLA. Es scheint eine vom TTL 7490 abgeschriebene Funktionsbeschreibung zu sein. Technische Daten sind nicht zu finden. Sie entsprechen wohl den HCMOS- üblichen Daten, wie bei anderen Zählern zu finden. Die wenigen konkreten Angaben : Output Drive Capability: 10 LS-TTL Loads Minimum Operating Speeds similar to LS-TTL Operating Voltage Range : 2 to 6 V Diode Protection on all Inputs Man kann ihn also als einen SN74LS90 mit reduziertem Stromverbrauch ansehen. __________________________________
Alle Angaben ohne Garantie. Fehler beim Abschreiben sind möglich. Wenn Sie seltsame Werte entdecken, scheuen Sie sich nicht, per email nachzufragen!
__________________________________
SN74LS2000 It seems to be the predecessor of the THCT2000. I possess a preliminary shortform in german language only, dated 12.1983. The preview description of the THCT2000 is dated 12.1985, it has no characteristics and timings, but detailed function declarations in english language. I can't see the technology of the THCT, perhaps it is H-CMOS, the prefered technology of the begin of the 1980s. The pinning has little differences, perhaps because it uses different abbreviations for the same function. Pin 74LS2000 THCT2000 1 : /CS 2 : /RD 3 : D0 4 : D1 5 : D2 6 : D3 7 : Gnd 8 : D4 9 : D5 10: D6 11: D7 12: /Borrow BO (not negated?!?) 13: /Carry CO 14: Gnd 15: /KL1,KL0 /CLI, /CLO 16: /Ready 17: M2 18: M1 19: M0 20: Ua1 A 1) 21: Ua2 B 1) 22: CLK 23: /A0 LSB, /MSB 2) 24: /Reset 25: /WE 26: /Down BI 1) 27: /Up CI 1) 28: Vcc 1) In the block circuit on the same place 2) In the block circuit this pin is named BYTE SELECT Making comparison for the mode selection table I think: The translation of the Texas Instrument 74LS2000 english original to the shortform in german language is made by someone not understanding the function. And therefore I don't understand this german paper even if it uses my language!! If your proplem is to replace the THCT by using the SN74LS2000, I think it is the problem of CMOS to TTL circuit conversion. But if you will replace TTL to THCT I believe it is a chance. My preliminary informations for both ICs are too little to decide if the chance is big or small, sorry. Most important seems to be the difference for pins 12 and 13. __________________________________
Without guaranty! Mistakes are possible. Please ask via email if you find a strange value!
__________________________________
82S129 256 x 4 bit bipolar PROM
SIGNETICS
256 x 4 bit bipolar PROM with Tri-State Outputs, supplied with
all outputs at logical low. Programmed to high at any
specified address by fusing a Ni-Cr link matrix. No separate
Fusing Pins!( The datasheet has no informations for the
programming procedure)
Pins:
1 : A6
2 : A5
3 : A4
4 : A3
5 : A0
6 : A1
7 : A2
8 : Gnd
9 : O4
10 : O3
11 : O2
12 : O1
13 : /CE1
14 : /CE2
15 : A7
16 : Vcc
Absolute Maximum Ratings:
Vcc = 7V
Vinput = Voutput = 5.5 V
Operating Temp.: 0 to 75 grdC.(N82S129)
-55 to 125 grdC.(S82S129)
Characteristics at Vcc=4.75 to 5.25 V (N82...)
4.5 to 5.5 V (S82...)
Input Voltage Low : max 0.85 V ( S82..: 0.8V )
High : min 2 V
Clamp at I in = -18 mA : max -1.2 V
Output Voltage Low at I out=16 mA : min 0.45 V (S82..: 0.5 V)
High at I out = - 2 mA : min 2.4 V
Input Current Low at V in = 0.45 V : max -100uA (S82..:-150uA)
High at V in = 5.5 V : max 40ua ( S82..: 50uA )
Output Current Hi-Z- State : max +/- 40uA ( S82..: 60uA )
Short Circuit for stored High: min -20mA, max -70mA (N82...)
min -15mA, max -85mA (S82...)
Supply Current: max 120 mA
Input Capacitance typ 5 pF,
Output Capacitance typ 8 pF
Times at R1=270Ohm(Output to Vcc), R2=600Ohm(Output to Gnd),
C=30pF(Output to Gnd) :
Access Time (Address to Outp) : max 50ns ( S82..: max 70 ns)
Access Time (Chip Enable to Outp): max 25ns (S82..: max35ns)
Disable Time : max 25ns ( S82..: max 35ns)
__________________________________
Without guaranty! Mistakes are possible. Please ask via email if you find a strange value!
__________________________________
82S191 16384 bit (2048x8) bipolar PROM, T.S. Pins: 1 : A7 2 : A6 3 : A5 4 : A4 5 : A3 6 : A2 7 : A1 8 : A0 9 : O1 10 : O2 11 : O3 12 : Gnd 13 : O4 14 : O5 15 : O6 16 : O7 17 : O8 18 : CE3 19 : CE2 20 : /CE1 21 : A1 (soll wohl A10 sein) 22 : A9 23 : A8 24 : Vcc Supply Current : typ 130ma, max 185 mA Access time : typ 50ns, max 100ns CE Access Time : typ 20 ns, max 50 ns Disable Time : typ 20 ns, max 50 ns All other as for 82S129 __________________________________
Without guaranty! Mistakes are possible. Please ask via email if you find a strange value!
__________________________________
87C64 Aus einem Philips Datenbuch: Der 87C64 hat dieselbe Pinbelegung wie der bekannte 27C64: 1 : Vpp Program Voltage 2 : A12 3 : A7 4 : A6 5 : A5 6 : A4 7 : A3 8 : A2 9 : A1 10 : A0 11 : O0 12 : O1 13 : O2 14 : Gnd 15 : O3 16 : O4 17 : O5 18 : O6 19 : O7 20 : ALE Adress Latch Enable 1) 21 : A10 22 : /OE 23 : A11 24 : A9 25 : A8 26 : n.c. bei 87C256 ist hier A13 27 : /PGM Program Strobe bei 87C256 ist hier A14 28 : Vcc 1) Latch bei negativer Flanke, dann = /CE wie bei 27C64 87er Typen können wegen des Adress- Latch nicht durch 27er Typen ersetzt werden. __________________________________
Alle Angaben ohne Garantie. Fehler beim Abschreiben sind möglich. Wenn Sie seltsame Werte entdecken, scheuen Sie sich nicht, per email nachzufragen!
__________________________________
Without guaranty! Mistakes are possible. Please ask via email if you find a strange value!