

TYPE 2N2845 AND 2N2846 HIGH-SPEED, SEPT® TRANSISTORS

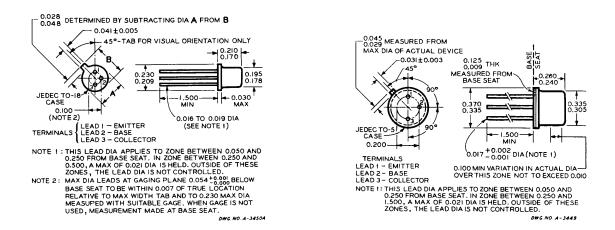
- N-P-N Silicon Planar Epitaxial Series

DESIGNED for high-speed switching applications over a wide current range, Type 2N2845 and 2N2846 Transistors feature:

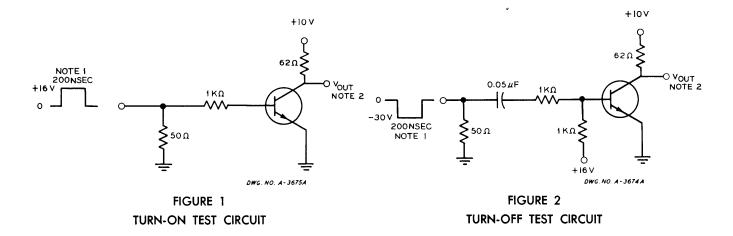
- BV_{CBO}......60 volts min.
- BV_{CEO}.....30 volts min.
- f₁......250 Mc

TYPE 2N2846 (TO-5 CASE)

ABSOLUTE MAXIMUM RATINGS'


Collector to Base Voltage, V _{CBO} 60 volts	Type 2N2845	Type 2N2846
Collector to Emitter Voltage, V _{CEO}	Total Device Dissipation at 25C Amb 360 mW	800 mW
Emitter to Base Voltage, V _{EBO}	Derating Factor above 25C Amb 2.1 mW °C	
Collector Current, I _C . limited by power dissipation only	Total Device Dissipation at 25C Case	
Operating Collector Junction Temp -65 C to $+200$ C	Temp1.2 Watts	3 Watts
Storage Temperature $\dots -65C$ to $+300C$	Derating Factor above 25C Case Temp. 6.9 mW/°C	17.2 mW/°C

1The maximum ratings are limiting absolute values above which the serviceability may be impaired from the viewpoint of life or satisfactory performance. The breakdown voltages may be far above the maximum voltage ratings. To avoid permanent damage to the transistor, do not attempt to measure these characteristics above the maximum ratings.


ELECTRICAL CHARACTERISTICS at T = 25 C

	CHARACTERISTICS	TES	T CONDITIONS		MIN.	MAX.	UNITS
		D-C CHARACT	TERISTICS				
BVCBO	Collector Breakdown Voltage	Ic = 0.1 mA	I _E = 0		60		Volts
BVCEO	Collector Breakdown Voltage ²	$I_C = 30 \text{mA}$	$I_B = 0$		30		Volts
BVEBO	Emitter Breakdown Voltage	$l_E = 0.1 mA$	$I_C = 0$		5		Volts
ICES	Collector Cutoff Current	$V_{CE} = 30V$	$V_{EB} = 0$		_	0.2	μ A
ICBO	Collector Cutoff Current	$V_{CB} = 30V$	1c = 0	$T_A = 150C$		200	μ A
hfE	Current Amplification Factor ²	$V_{CE} = 10V$	$l_C = 150 mA$		30	120	· —
hfE	Current Amplification Factor ²	$V_{CE} = 10V$	$I_C = 500 mA$		20		_
hfE	Current Amplification Factor ²	$V_{CE} = 1.0V$	$I_C = 500 \text{mA}$		10	_	_
V _{BE}	Base Emitter Voltage	$I_C = 150mA$	$l_B = 15mA$			1.2	Volts
V _{BE}	Base Emitter Voltage ²	$I_C = 500 mA$	$l_B = 50mA$			1.6	Volts
V _{CE} (SAT)	Collector Saturation Voltage	$I_C = 150mA$	$l_B = 15mA$			0.4	Volts
V _{CE} (SAT)	Collector Saturation Voltage ²	$I_C = 500 \text{mA}$	$l_B = 50mA$		_	1.0	Volts
	HIGH	H FREQUENCY CH	ARACTERISTI	CS			
fī	Gain Bandwidth Product	V _{CE} = 10V	Ic = 50mA	f = 100Mc	250		Mc
Cob	Output Capacitance	$V_{CB} = 10V$	I _E = 0			8	pF
ton	Turn-On Time ³	IC = 150mA	$l_{B1} = 15mA$			40	nsec
toff	Turn-Off Time4	$I_C = 150 \text{mA}$	$l_{B_1} = 15mA$	$l_{B2} = -15mA$	_	40	nsec
² Pulse Test	³ See Figure 1 4See Figur	re 2					

SPRAGUE ELECTRIC COMPANY EXECUTIVE OFFICES: NORTH ADAMS, MASS. SEMICONDUCTOR DIVISION CONCORD, N. H.

Marking. All transistors will be marked with the type number; the name SPRAGUE or the registered Sprague trademark, (2), at vendor's option; and date code of manufacture, unless otherwise specified.

Note 1: Input rise time sufficiently fast that doubling or halving its value does not affect the measurement.

Note 2: Scope rise time and impedance are such that doubling or halving the value does not affect the measurement.

TYPE 2N2847 AND 2N2848 HIGH-SPEED, SEPT® TRANSISTORS

- N-P-N Silicon Planar Epitaxial Series

DESIGNED for high-speed switching applications over a wide current range, Type 2N2847 and 2N2848 Transistors feature:

- BV_{CBO} 60 volts min.

- t_{off}40 nsec at $I_C = 150 \text{mA}$

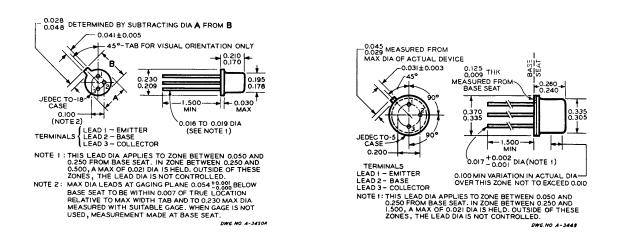
TYPE 2N2848 (TO-5 CASE)

ABSOLUTE MAXIMUM RATINGS'

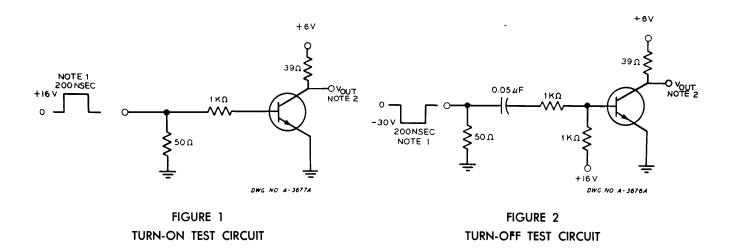
Collector to Base Voltage, V _{CBO} 60 volts	
Collector to Emitter Voltage, V _{CEO} 20 volts	
-Emitter to Base Voltage, V _{EBO}	
Collector Current, I _C limited by power dissipation only	-
Operating Collector Junction Temp -65 C to $+200$ C	
Storage Temperature	

	Type 2N2847	Type 2N2848
Total Device Dissipation at 25C Amb.	360mW	800mW
Derating Factor above 25C TA	2.1 mW / °C	4.6mW/°C
Total Device Dissipation at 25C Case Temp	1.2 Watts	3 Watts
Derating Factor above 25C Case Tem	p. 6.9mW/°C	17.2mW/°C

¹The maximum ratings are limiting absolute values above which the serviceability may be impaired from the viewpoint of life or satisfactory performance. The breakdown voltages may be far above the maximum voltage ratings. To avoid permanent damage to the transistor, do not attempt to measure these characteristics above the maximum ratings.

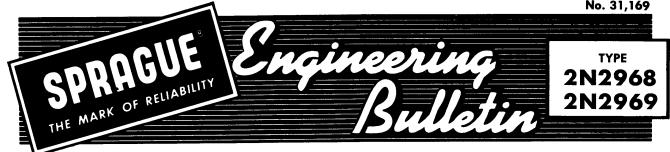

ELECTRICAL CHARACTERISTICS at T = 25 C

	CHARACTERISTICS	TEST CONDITIONS		MIN.	MAX.	UNITS
		D-C CHARACTERISTICS				
BVCBO	Collector Breakdown Voltage	IC = 0.1 mA IE = 0		60	_	Volts
BVCEO	Collector Breakdown Voltage ²	$I_C = 30 \text{mA}$ $I_B = 0$		20		Volts
BVEBO	Emitter Breakdown Voltage	$I_E = 0.1 \text{ mA}$ $I_C = 0$		5		Volts
1 CES	Collector Cutoff Current	$V_{CE} = 30V$ $V_{EB} = 0$			0.2	μA
1 _{CBO}	Collector Cutoff Current	$V_{CB} = 30V$ $I_{C} = 0$	$T_A = 150C$		200	μ Α
hfE	Current Amplification Factor ²	$V_{CE} = 10V$ $I_{C} = 150 \text{mA}$		40	140	·
hfe	Current Amplification Factor ²	$V_{CE} = 10V$ $I_{C} = 500 \text{mA}$		30		
hfE	Current Amplification Factor ²	$V_{CE} = 1.0V$ $I_{C} = 500 \text{mA}$		10	_	
VBE	Base Emitter Voltage	$I_C = 150 \text{mA}$ $I_B = 15 \text{mA}$			1.2	Volts
VBE	Base Emitter Voltage ²	$I_C = 500$ mA $I_B = 50$ mA			1.6	Volts
VCE(SAT)	Collector Saturation Voltage	$I_C = 150 \text{mA}$ $I_B = 15 \text{mA}$			0.4	Volts
V _{CE} (SAT)	Collector Saturation Voltage ²	$1_C = 500 \text{mA}^1$ $1_B = 50 \text{mA}$			0.75	Volts
	HIG	H FREQUENCY CHARACTERIST	ICS	,	-	
ft	Gain Bandwidth Product	V _{CE} = 10V I _C = 50mA	f = 100Mc	250		Mc
Cob	Output Capacitance	$V_{CB} = 10V$ $I_E = 0$			8	pF
ton	Turn-On Time ³	$I_C = 150 \text{mA}$ $I_{B1} = 15 \text{mA}$			25	nsec
toff	Turn-Off Time ⁴	$I_C = 150 \text{mA}$ $I_{B1} = 15 \text{mA}$	$l_{B2} = -15mA$		40	nsec


²Pulse Test

³See Figure 1

⁴See Figure 2



Marking. All transistors will be marked with the type number; the name SPRAGUE or the registered Sprague trademark, (2), at vendor's option; and date code of manufacture, unless otherwise specified.

Note 1: Input rise time sufficiently fast that doubling or halving its value does not affect the measurement.

Note 2: Scope rise time and impedance are such that doubling or halving the value does not affect the measurement.


TYPE 2N2968 AND 2N2969 SYMMETRICAL P-N-P SILICON PRECISION ALLOY TRANSISTORS

ESIGNED for use in bi-directional switching, chopping, multiplex, and analog circuits, as well as many other applications where high inverse and forward gain is required, Type 2N2968 and 2N2969 symmetrical SPAT® transistors feature:

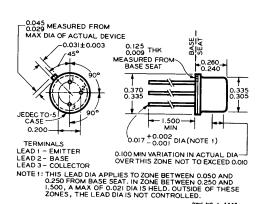
 BV_{CBO} and $BV_{\text{EBO}}.....30$ volts min.

TYPE 2N2969 (TO-18 CASE)

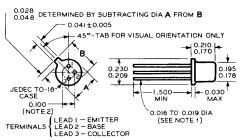
ABSOLUTE MAXIMUM RATINGS'

Collector Voltage, V _{CB}	30 volts
Collector Voltage, V _{CEO}	10 volts
Emitter Voltage, V _{EB}	30 volts
Emitter Voltage, V _{ECO}	10 volts
Collector Current, I _C	.50 mA

¹The maximum ratings are limiting absolute values above which the serviceability may be impaired from the viewpoint of life or satisfactory performance. The breakdown voltages may be far above the max-


Storage Temperature......-65 C to +140 C Device Dissipation at 25 C ambient 150 mW Derating Factor above 25 C ambient . . . 1.3 mW/°C Lead Temperature at 1/6" ± 1/2" from case.....230 C

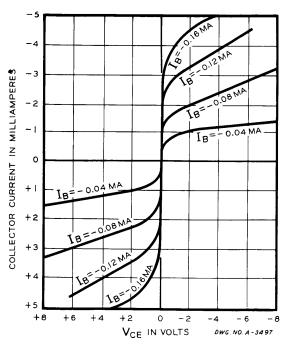
imum voltage ratings. To avoid permanent damage to the transistor, do not attempt to measure these characteristics above the maximum ratinas.


ELECTRICAL CHARACTERISTICS 2 at T = 25 C

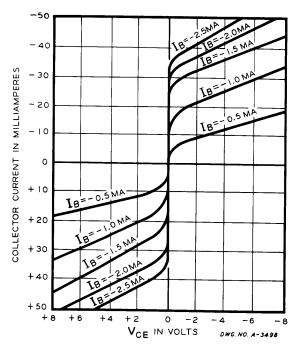
	CHARACTERISTIC	CS		TEST CONDITIONS			MIN.	MAX.	UNITS
		D - C	CHARA	CTERISTICS					
BVCBO	Collector Breakdown Voltage	lc	$= -10\mu A$				30		Volts
BVCEO	Collector Breakdown Voltage	lc	$= -10\mu A$				10	_	Volts
BVEBO	Emitter Breakdown Voltage	1 _E	$= -10\mu A$				30	-	Volts
BVECO	Emitter Breakdown Voltage	I _E	$= -10\mu A$				10	_	Volts
ICBO	Collector Cutoff Current	VcB	= -15V				_	10	nA
I _{EBO}	Emitter Cutoff Current	VEB	= -15V					10	nA
hfE	Current Amplification Factor	VCE	= -0.5V	$I_B = -100\mu A$			15		
hFC	Current Amplification Factor	VEC	= -0.5V	$I_B = -100\mu A$			15	_	
VCE (SAT)	Collector Saturation Voltage	Ic	= -10 mA	$I_B = -2mA$				60	mV
VEC (SAT)	Emitter Saturation Voltage	1 _E	= -10 mA	$l_B = -2mA$				60	mV
V _{off1}	Offset Voltage	lΒ	$= -200 \mu A$					3	mV
V _{off2}	Offset Voltage	IΒ	$= -200\mu A$				_	3	mV
	SA	1 A L L	SIGNAL	PARAMETERS			-		
Cob	Output Capacitance	V _{CB}	= -6V	I _E = 0	f =	4Mc		6	pF
Cib	Input Capacitance	VEB	= -6V	Ic = 0	f =	4Mc	_	6	pF
fTi	Gain Bandwidth Product	VCE	= -6V	IE = 1 mA	f =	4Mc	10	_	Mc
f _{T2}	Gain Bandwidth Product	VEC	= -6V	Ic = 1mA	f =	4Mc	10		Mc
rsi	Dynamic Saturation Resistance	l _B	$= -200 \mu A$		-			30	ohms
rs2	Dynamic Saturation Resistance	IB	$= -200\mu A$					30	ohms

²To avoid exceeding the maximum voltage ratings, the breakdown voltages must be measured by setting the voltage at the minimum specified (maximum rating). If the resultant current voltage is less than the value given as a condition of test, the breakdown voltage is within specification.

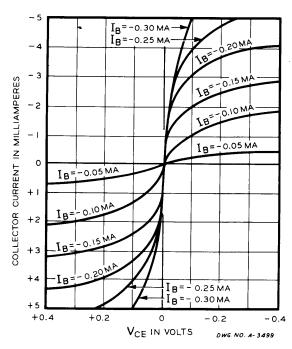
TYPE 2N2968 (TO-5 CASE)

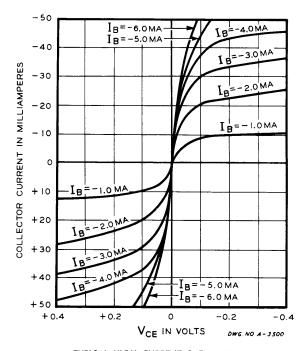


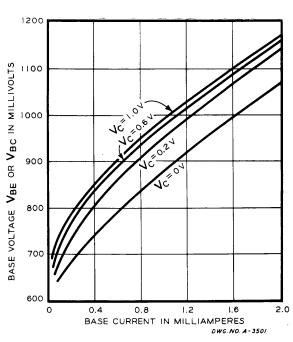
NOTE 1: THIS LEAD DIA APPLIES TO ZONE BETWEEN 0.050 AND 0.250 FROM BASE SEAT. IN ZONE BETWEEN 0.250 AND 0.500, A MAX OF 0.021 DIA IS HELD. OUTSIDE OF THESE ZONES, THE LEAD DIA IS NOT CONTROLLED.

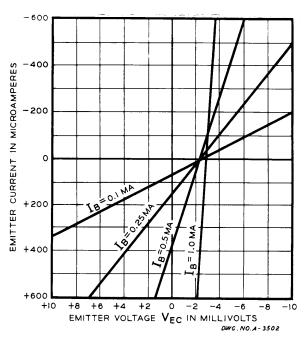

NOTE 2: MAX DIA LEADS AT GAGING PLANE 0.054 (2000) BELOW BASE SEAT TO BE WITHIN 0.007 OF TRUE LOCATION RELATIVE TO MAX WIDTH TAB AND TO 0.230 MAX DIA MEASURED WITH SUITABLE GAGE. WHEN GAGE IS NOT USED, MEASUREMENT MADE AT BASE SEAT.

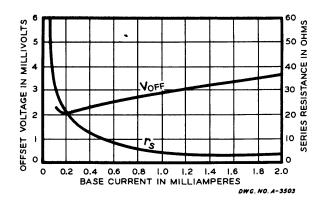
TYPE 2N2969 (TO-18 CASE)


TYPICAL CHARACTERISTIC CURVES


TYPICAL LOW CURRENT COLLECTOR CHARACTERISTICS

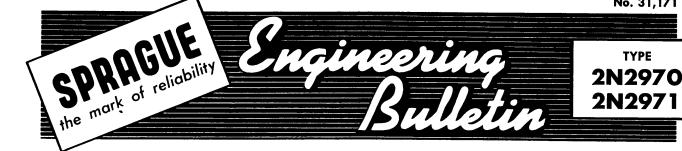

TYPICAL HIGH CURRENT COLLECTOR CHARACTERISTICS


TYPICAL LOW CURRENT SATURATED REGION COLLECTOR CHARACTERISTICS


TYPICAL HIGH CURRENT SATURATED REGION COLLECTOR CHARACTERISTICS

TYPICAL BASE INPUT CHARACTERISTICS

TYPICAL SUPER SATURATED REGION EMITTER CHARACTERISTICS


TYPICAL OFFSET VOLTAGE AND SERIES RESISTANCE AS A FUNCTION OF BASE CURRENT

In the construction of the components described, the full intent of the specification will be met. The Sprague Electric Company, however, reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the design of its products. Components made under military approvals will be in accordance with the approval requirements.

The information included herein is believed to be accurate and reliable. However, the Sprague Electric Company assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

LITHO IN U.S. AMER.

TYPE

TYPE 2N2970 AND 2N2971 SYMMETRICAL P-N-P SILICON PRECISION ALLOY TRANSISTORS

ESIGNED for use in bi-directional switching, chopping, multiplex, and analog circuits, as well as many other applications where high inverse and forward gain is required, Type 2N2970 and 2N2971 symmetrical SPAT® transistors feature:

 BV_{CBO} and BV_{EBO}30 volts min. h_{FE} and h_{FC}10 min.

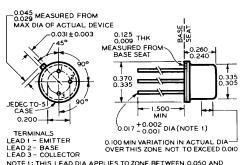
TYPE 2N2970 (TO-5 CASE)

TYPE 2N2971 (TO-18 CASE)

ABSOLUTE MAXIMUM RATINGS1

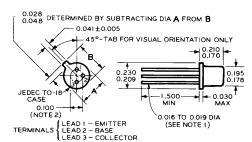
Collector Voltage, V _{CB}	30 volts
Collector Voltage, V _{CEO}	20 volts
Emitter Voltage, V _{EB}	30 volts
Emitter Voltage, V _{ECO}	20 volts
Collector Current, I _C	.50 mA

1The maximum ratings are limiting absolute values above which the serviceability may be impaired from the viewpoint of life or satisfactory performance. The breakdown voltages may be far above the maxStorage Temperature.......... -65 C to +140 C Device Dissipation at 25 C ambient........................... 150 mW Derating Factor above 25 C ambient ... 1.3 mW/°C Lead Temperature at $\frac{1}{6}$ " $\pm \frac{1}{22}$ " from case 230 C


imum voltage ratings. To avoid permanent damage to the transistor, do not attempt to measure these characteristics above the maximum ratinas.

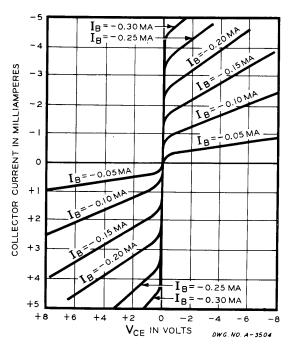
ELECTRICAL CHARACTERISTICS² at T = 25 C

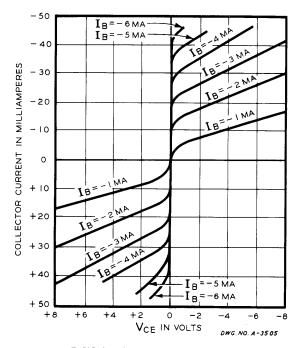
	CHARACTERISTIC	S	TES	T CONDITIONS		MIN	MAX.	UNITS
		D - C	CHARAC	TERISTICS				
BVCBO	Collector Breakdown Voltage	lc	= -10μA			30		Volt
BVCEO	Collector Breakdown Voltage	lc	$= -10\mu A$			20		Volt
BVEBO	Emitter Breakdown Voltage	ΙĘ	$= -10\mu A$			30		Volt
BVECO	Emitter Breakdown Voltage	ΙE	$= -10\mu A$			20	_	Volt
ICBO	Collector Cutoff Current	VcB	= -15V				10	nA
I _{EBO}	Emitter Cutoff Current	VEB	= -15V			_	10	nA
hfe	Current Amplification Factor	VCE	= -0.5V	$I_{B} = -100$	μA	10		
hFC	Current Amplification Factor	VEC	= -0.5 V	$l_B = -100$		10	_	_
VCE (SAT)	Collector Saturation Voltage	lc	= -10mA	$l_B = -2mA$			80	m۷
VEC (SAT)	Emitter Saturation Voltage	ΙĒ	= -10mA	$l_B = -2mA$		_	80	mV
V _{off1}	Offset Voltage	ĺΒ	$= -200 \mu A$			_	4	mV
V _{off2}	Offset Voltage	ΙB	$= -200\mu A$			_	4	mV
	SM	ALL	SIGNAL P	ARAMETE	R S			
Cob	Output Capacitance	V _{СВ}	= -6V	IE = 0	f =	4Mc —	6	pF
Сіь	Input Capacitance	VEB	= -6V	lc = 0	f =	4.4.4	6	pF
fT1	Gain Bandwidth Product	VCE	= ∸6V	le = 1mA	f =		_	Mc
f _{T2}	Gain Bandwidth Product	VEC	= -6V	Ic = 1mA	f =	4Mc 8		Mc
r _s 1	Dynamic Saturation Resistance	l _B	$= -200 \mu A$		-		40	ohms
rs2	Dynamic Saturation Resistance	lΒ	$= -200\mu$ A				40	ohms


²To avoid exceeding the maximum voltage ratings, the breakdown voltages must be measured by setting the voltage at the minimum specified (maximum rating). If the resultant current voltage is less than the value given as a condition of test, the breakdown voltage is within specification.

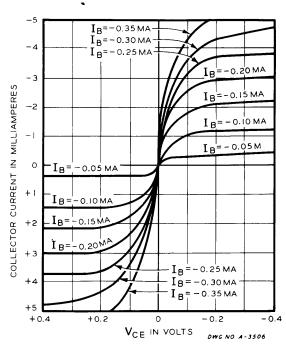
[&]quot;SPAT" is a registered trademark of the Philco Corp

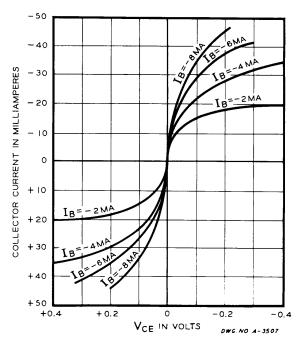
NOTE 1: THIS LEAD DIA APPLIES TO ZONE BETWEEN 0.050 AND 0.250 FROM BASE SEAT. IN ZONE BETWEEN 0.250 AND 1.500, A MAX OF 0.021 DIA IS HELD. OUTSIDE OF THESE ZONES, THE LEAD DIA IS NOT CONTROLLED.

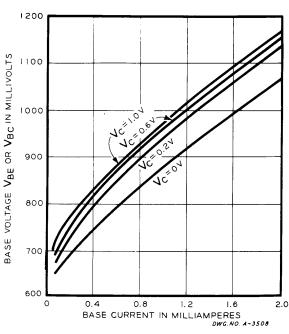

DWG NO A-3449

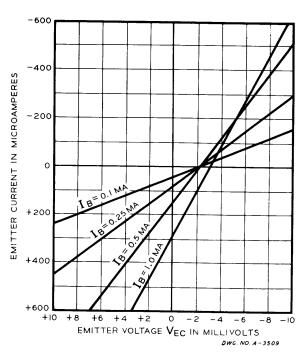

NOTE 1: THIS LEAD DIA APPLIES TO ZONE BETWEEN 0.050 AND 0.250 FROM BASE SEAT. IN ZONE BETWEEN 0.250 AND 0.250 FROM BASE SEAT. IN ZONE BETWEEN 0.250 AND 0.500, A MAX OF 0.021 DIA IS HELD. OUTSIDE OF THESE ZONES, THE LEAD DIA IS NOT CONTROLLED.

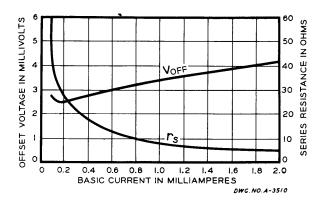
NOTE 2: MAX DIA LEADS AT GAGING PLANE 0.054 ±0.000 BELOW BASE SEAT TO BE WITHIN 0.007 OF TRUE LOCATION RELATIVE TO MAX WIDTH TAB AND TO 0.230 MAX DIA MEASURED WITH SUITABLE GAGE. WHEN GAGE IS NOT USED, MEASUREMENT MADE AT BASE SEAT.


TYPICAL CHARACTERISTIC CURVES


TYPICAL LOW CURRENT COLLECTOR **CHARACTERISTICS**

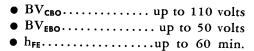

TYPICAL HIGH CURRENT COLLECTOR **CHARACTERISTICS**


TYPICAL LOW CURRENT SATURATED REGION COLLECTOR CHARACTERISTICS


TYPICAL HIGH CURRENT SATURATED REGION COLLECTOR CHARACTERISTICS

TYPICAL BASE INPUT CHARACTERISTICS

TYPICAL SUPER SATURATED REGION EMITTER CHARACTERISTICS



TYPICAL OFFSET VOLTAGE AND SERIES RESISTANCE AS A FUNCTION OF BASE CURRENT

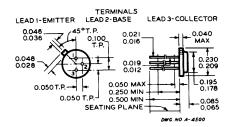
2N3060 thru 2N3065

TYPE 2N3060 thru 2N3065 SEPT® TRANSISTORS -PNP Silicon Planar Epitaxial Series

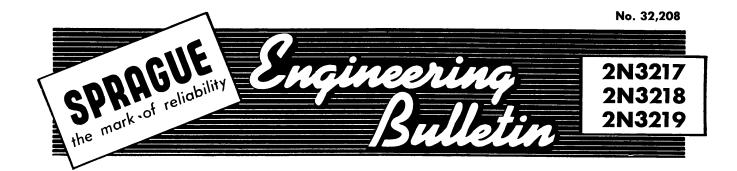
DESIGNED FOR high-gain amplifier and control applications, Type 2N3060 through 2N3065 Transistors feature:

TO-46 CASE

ABSOLUTE MAXIMUM RATINGS'


Storage Temp. −65 C to +200 C Collector Current, Ic 100mA	2N3060	2N3062	2N3064
	2N3061	2N3063	2N3065
Derating Factor above 25 C Amb	Collector to Base Voltage, V _{CBO}	80V	110V 100V 50V

¹The maximum ratings are limiting absolute values above which the serviceability may be impaired from the viewpoint of life or satisfactory performance. The breakdown voltages may be far above the maximum voltage ratings.


To avoid permanent damage to the transistor, do not attempt to measure these characteristics above the maximum ratings.

ELECTRICAL CHARACTERISTICS at T = 25 C

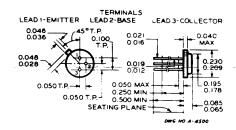
	CHARACTERISTICS	TEST CONDITIONS		MIN.	MAX.	UNITS
		D-C CHARACTERIS	TICS			
ICBO	Collector Cutoff Current	V _{CB} = 60V	2N3060/1		5	nA
		$V_{CB} = 80V$	2N3062/3		5	nA
		$V_{CB} = 100V$	2N3064/5	_	5	nA
IEBO	Emitter Cutoff Current	$V_{EB} = -20V$	2N3060/1		5	nA
			2N3062/3		5	nA
			2N3064/5		5	nA
BVCBO	Collector-Base Voltage	$I_C = -1\mu A$	2N3060/1	<i>7</i> 0		Volts
			2N3062/3	90		Volts
			2N3064/5	110		Volts
BVCEO	Collector-Emitter Voltage	$I_C = -1\mu A$	2N3060/1	60		Volts
			2N3062/3	80		Volts
			2N3064/5	100		Volts
BVEBO	Emitter-Base Voltage	$I_E = -1\mu A$	2N3060/1	30		Volts
			2N3062/3	40		Volts
			2N3064/5	50		Volts
hfE	Forward Current Gain	$V_{CE} = -6V$, $I_{C} = -1 mA$	2N3060	30	90	
			2N3061	60	180	
			2N3062	20	80	
			2N3063	50	150	
			2N3064	15	45	
			2N3065	30	90	
VBE	Base Input Voltage	$V_{CE} = -6V$, $I_{C} = -1 mA$			1	Volt
	HIGH	FREQUENCY CHARA	CTERISTICS			
h _{fe}	Forward Current Gain	$V_{CE} = -6V$, $I_{C} = -1 \text{mA}$	2N3060	30	120	
		f = 1Kc	2N3061	60	240	
			2N3062	20	110	
			2N3063	50	200	
			2N3064	15	60	
			2N3065	30	120	
Соь	Collector Capacitance	$V_{CB} = -6V$, $I_{C} = -1 mA$			10	рF

In the construction of the components described, the full intent of the specification will be met. The Sprague Electric Componny, however, reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the design of its products. Components made under military approvals will be in accordance with the approval requirements.

TYPE 2N3217, 2N3218, AND 2N3219 SEPT® TRANSISTORS P-N-P Silicon Planar Epitaxial Series

DESIGNED FOR general purpose switching, chopper, and amplifier applications, Type 2N3217, 2N3218, and 2N3219 SEPT Transistors feature:

ź.	ž	ě.	
-		ш.	


	2N3217	2N3218	2N3219	
BV_{EBO}	15	25	40	Volts
I _{CBO}	1	1	1	$n\mathbf{A}$
\mathbf{h}_{FE}	40	30	20	
V_{OFF}	1.25	1.5	2.5	mV

TO-46 CASE

ABSOLUTE MAXIMUM RATINGS'

MECHANICAL SPECIFICATIONS

	2N3217	2N3218	2N3219
Collector to Base Voltage, VCBO	. 15V	25V	40V
Emitter to Base Voltage, VEBO	15V	25V	40V
Collector to Emitter Voltage, VCEO*	107	20V	35V
Emitter to Collector Voltage, VECO	107	20V	35V
Storage Temp		-65 C to	+200 C
Collector Current, Ic			100mA
Total Device Dissipation at 25 C Amb.			
Derating Factor above 25 C Amb		2. :	3 mW/°C
Lead Temp. (1/16" from case for 10 sec.)		240 C

¹The maximum ratings are limiting absolute values above which the serviceability may be impaired from the viewpoint of life or satisfactory performance. The breakdown voltages may be far above the maximum voltage ratings. To avoid permanent damage to the transistor, do not attempt to measure these characteristics above the maximum ratings.

ELECTRICAL CHARACTERISTICS at T = 25 C

				2N3217		2N3218		2N3219	
	CHARACTERISTICS	CONDITIONS	Min.	Max.	Min.	Max.	Min.	Max.	UNITS
		D-C CHARACTERISTI	C S				·	<u> </u>	
ICBO	Collector Cutoff Current	At max. rated voltage		1.0		1.0	T	1.0	nA
IEBO T	Emitter Cutoff Current	At max. rated voltage		1.0		1.0		1.0	nA
BV _{CEO} *	Collector-Emitter Voltage	$I_{C} = -1\mu A$	10		20	l	35	l —	Volts
BVECO	Emitter-Collector Voltage	$I_{E} = -1\mu A$	10		20	l—	35		Volts
hfe*	Forward Current Gain	$V_{CE} = -0.5V$, $I_{C} = -5mA$	40	l	30		20	—	
VCE(SAT)*	Saturation Voltage	$l_B = -0.5 \text{mA}$, $l_C = -5 \text{mA}$	l	0.1	l	0.1		0.13	Volts
V _{BE} *	Base Input Voltage	$l_B = -0.5 \text{mA}$, $l_C = -5 \text{mA}$	0.65	1.0	0.65		0.65		
Voff*	Offset Voltage	$I_{B} = -1 mA$		1.25		1.5		2.5	mV
V _{off} *	Series Resistance	$I_B = -1 \text{mA}$, $I_E = 100 \mu \text{A}$		20.0		35.0		45.0	Ohms
Voff	Offset Voltage	$I_B = -200\mu A$		1.0		2.0		3.0	mV
VEC(SAT)	Inverted Saturation Voltage	$I_{B} = -200\mu A, I_{E} = -10\mu A$		3.0		5.0	l —	7.0	mV
	HIGH	FREQUENCY CHARACT	ERIS	TIC	S				
ft	Gain Bandwidth Product	$V_{CE} = -6V$, $I_{C} = -1mA$	1		1]	1	l —	Mc
Cib	Emitter Capacitance	$V_{EB} = -6V$, $I_{E} = 0$	l —	8		8	l —	8	pF
Cob	Collector Capacitance	$V_{CB} = -6V$, $I_{C} = 0$	l —	14		14		14	pF

^{*}Data not registered with JEDEC.

SPRAGUE ELECTRIC COMPANY SALES OFFICES

ALABAMA

In Huntsville, write to Washington, D. C. office or call Operator and ask for WX4000. No charge for WX calls

ARIZONA

Sprague Electric Company Guaranty Bank Bldg. 3550 N. Central Ave. Phoenix, Ariz. 85012 Tel. (602) 279-5435

CALIFORNIA

Sprague Electric Company 12870 Panama Street Los Angeles, Calif. 90066 L.A. Tel. (213)870-0161 S.M. Tel. (213)391-0611

William J. Purdy of Calif. 312 Seventh Street San Francisco, Calif. 94103 Tel. (415) 863-3300

* Refrigeration Components, Inc. 1448 West 240th Street Harbor City, Calif. 90710 Tel. (213) 325-3420

COLORADO

Sprague Electric Company 5670 E. Evans Ave. Denver, Colo. 80222 Tel. (303) 756-3611

DISTRICT OF COLUMBIA

Sprague Electric Company 2321 Wisconsin Avenue, N. W. Washington, D. C. 20007 Tel. (202) 338-7911

FLORIDA

Sprague Electric Company 1439 Gulf to Bay Blvd. Clearwater, Fla. 33515 Tel. (813) 446-0466

GEORGIA

* Joe E. Parker P.O. 13043, Station K 1818 Sheridan Rd., N.E. Atlanta, Ga. 30324 Tel. (404) 634-2451

ILLINOIS

Sprague Electric Company 5942 West Montrose Avenue Chicago, III. 60634 Tel. (312) 685-6400

* Refrigerants, Inc. 3950 Main Street Skokie, III. 60077 Tel. (312) 675-4000

INDIANA

Sprague Electric Company 2511 East 46th Street Indianapolis, Ind. 46205 Tel. (317) 546-4911

MASSACHUSETTS

Sprague Electric Company Marshall Street North Adams, Mass 01248 Tel. (413) 664-4411

Sprague Electric Company 313 Washington Street Newton, Mass. 02158 Tel. (617) 969-7640

MICHIGAN

ABM Sales Company 10116 Puritan Avenue Detroit, Mich. 48238 Tel. (313) 862-1300

* Mareco, Inc. Chamber of Commerce Bldg. 216 North Main Street Adrian, Mich. 49221 Tel. (313) 365-2134

MINNESOTA

H. M. Richardson & Co., Inc. 9 East 22nd Street Minneapolis, Minn. 55404 Tel. (612) 335-7734

MISSOURI

Sprague Electric Company 3910 Lindell Boulevard St. Louis, Mo. 63108 Tel. (314) 535-7239

NEW JERSEY

Sprague Electric Company Suite 106, Northgate Plaza Camden, N. J. 08102 Cam. Tel. (609) 966-1776 Phila. Tel. (215) 925-3066

NEW MEXICO

C. T. Carlberg and Associates P. O. Box 3177, Station D Albuquerque, N. Mex. 87110 Tel. (505) 265-1579

NEW YORK

Sprague Electric Company 50 East 41st Street New York, N. Y. 10017 Tel. (212) 679-1195

* Boone Refrigeration Sales Co. 15 Bellemeade Ave. Smithtown, L. I., N. Y. 11787 Tel. (516) 265-6700

NEW YORK (Cont.)

William Rutt, Inc. 123 Middle Neck Road Great Neck, L. I., N. Y. 11021 Tel. (516) 482-8160

NORTH CAROLINA

Sprague Electric Company 928 Burke Street Winston-Salem, N. C. 27101 Tel. (919) 722-5151

OHIC

Sprague Electric Company 24 North Main Street Chagrin Falls, Ohio 44022 Tel. (216) 247-6488

Sprague Electric Company 224 Leo Street Dayton, Ohio 45404 Tel. (513) 223-9187 Jn Cincinnati, Call Operator and Ask for Enterprise 3-8805 No charge for Enterprise calls

TEXAS

Sprague Electric Company Suite 545, First Bank and Trust Bldg. Richardson, Texas 75080 Tel. (214) 235-1256

WASHINGTON

Sprague Electric Company 4601 Aurora Ave. North Seattle, Wash. 98103 Tel. (206) 632-7761

CANADA

Sprague-TCC Canada, Ltd. 860 Decarie Blvd. Ville St. Laurent Montreal 9, P. Q. Canada Tel. (514) 747-7811

Sprague-TCC Canada, Ltd. 50 Bertal Road Toronto 15, Ont., Canada Tel. (416) 766-6123

EUROPE

Sprague World Trade Corp. Utoquai 41 Zurich 8, Switzerland Tel. 051 47-01-33

Sprague GmbH Kettenhofweg 131 Frankfort/Main, Germany Tel. 77-50-72

Sprague France SARL 34 Ave. Champs Elysees Paris (8e), France Tel. 359-8458

In the construction of the components described, the full intent of the specification will be met. The Sprague Electric Company, however, reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the design of its products. Components made under military approvals will be in accordance with the approval requirements.

^{*}Airconditioning and Refrigeration Components Only