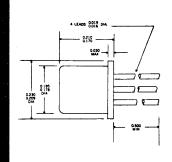
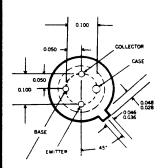


## TRANSISTOR SPECIFICATIONS

#### **GENERAL DESCRIPTION:**


The KMC 2N3570, 2N3571 and 2N3572 are NPN Silicon Transistors especially designed for UHF amplifiers, oscillators and mixers. Featuring low noise figure and high gain-bandwidth product, these devices are packaged in a TO-72 outline.


absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

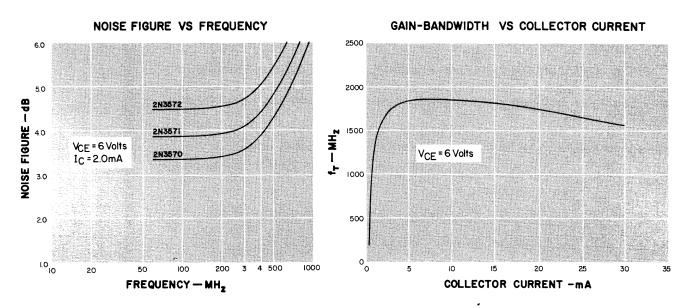
|                                                                       | 2N3570 | 2N3571  | 2N3572        |
|-----------------------------------------------------------------------|--------|---------|---------------|
| Collector-Base Voltage                                                | 30 v   | 25 v    | 25 v          |
| Collector-Emitter Voltage (See Note 1)                                | 15 v   | 15 v    | 13 v          |
| Emitter-Base Voltage                                                  | . 3 v  | 3v      | 3 v           |
| Collector Current                                                     | · ←    | 50 ma   | $\rightarrow$ |
| Continuous Device Dissipation at (or below) 25°C Free-Air Temperature |        |         |               |
| (See Note 2)                                                          | ←      | 200 mw  | $\rightarrow$ |
| Continuous Device Dissipation at (or below) 25°C Case Temperature     |        |         |               |
| (See Note 3)                                                          |        | 350 mw  | <b>→</b>      |
| Storage Temperature Range                                             | 65°    | C to +2 | 00°C          |
| Lead Temperature 1/16 Inch from Case for 10 Seconds                   | ←      | 300°C   | <b>→</b>      |

NOTES: 1. This value applies when the base-emitter diode is open-circuited.
2. Derate linearly to 200°C free-air temperature at the rate of 1.14 mw/C°.
3. Derate linearly to 200°C case temperature at the rate of 2 mw/C°.
4. This parameter must be measured using pulse techniques. PW = 300 µsec, Duty Cycle ≤ 2%.
5. C<sub>Cb</sub>'is measured using three-terminal measurement techniques with case and emitter guarded.
6. 100% tested for noise figure.

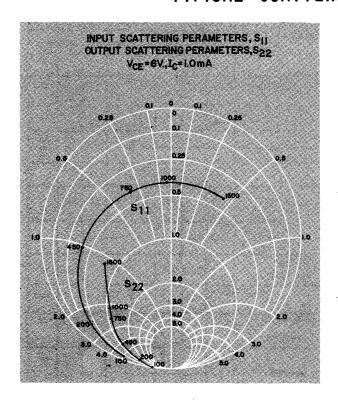
electrical characteristics at 25°C free-air temperature (unless otherwise noted)

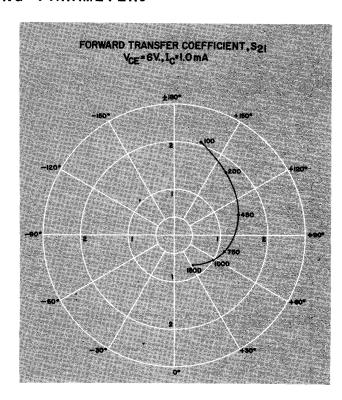





All elements isolated from case . . . fourth lead grounded to case

| PARAMETER                     |                                                               |                                                                                                                                          | 2N3570 |      | 0    | 2N3571 |      | 2N3572 |      |      |
|-------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------|------|------|--------|------|--------|------|------|
|                               |                                                               | TEST CONDITIONS†                                                                                                                         |        | TYP  | MAX  | MIN    | MAX  | MIN    | MAX  | UNIT |
| BV CBO                        | Collector-Base Breakdown Voltage                              | $I_{c}=1$ $\mu a$ , $I_{E}=0$                                                                                                            | 30     |      |      | 25     |      | 25     |      | ٧    |
| BV CEO                        | Collector-Emitter Breakdown Voltage                           | $I_C = 2 \text{ ma}, I_B = 0,$ See Note 4                                                                                                | 15     |      |      | 15     |      | 13     |      | ٧    |
| BV EBO                        | Emitter-Base Breakdown Voltage                                | $I_E=10$ $\mu$ a, $I_C=0$                                                                                                                | 3      |      |      | 3      |      | 3      |      | ٧    |
| СВО                           | Collector Cutoff Current                                      | $V_{CB} = 6 \text{ v, } I_E = 0$                                                                                                         |        |      | 10   |        | 10   |        | 10   | na   |
|                               |                                                               | $V_{CB} = 6 \text{ v, } I_{E} = 0,  T_{A} = 150^{\circ}\text{C}$                                                                         | - 00   |      | 150  |        | 1    |        | 1    | μa   |
| h <sub>FE</sub>               | Static Forward Current Transfer Ratio                         | $V_{CE} = 6 \text{ v, I }_{C} = 5 \text{ ma}$                                                                                            | 20     |      | 150  | 20     | 200  | 20     | 300  |      |
| h <sub>fe</sub>               | Small-Signal Common-Emitter<br>Forward Current Transfer Ratio | $V_{CE} = 6 \text{ v, I}_{C} = 5 \text{ ma, } f = 1 \text{ kc}$                                                                          | 20     |      | 200  | 20     | 250  | 20     | 350  |      |
| h<br>fe                       | Smill-Signal Common-Emitter<br>Forward Current Transfer Ratio | $V_{CE} = 6 \text{ v, I }_{C} = 5 \text{ ma},  f = 400 \text{ Mc}$                                                                       | 3.75   | 4.25 | 6    | 3      | 6    | 2.5    | 6    |      |
| C <sub>cb</sub>               | Collector-Base Capacitance                                    | $V_{CB} = 6$ v, $I_{E} = 0$ , $f = 1$ Mc, See Note 5                                                                                     |        | 0.60 | 0.75 |        | 0.85 |        | 0.85 | pf   |
| r <sub>b</sub> C <sub>c</sub> | Collector-Base Time Constant                                  | $V_{CB} = 6v, I_E = -5 \text{ ma}, f = 79.8 \text{ Mc}$                                                                                  | 1      | 5    | 8    | 1      | 10   | 1      | 13   | psec |
| NF                            | Noise Figure<br>See Note 6                                    | $V_{CE} = 6V$ , $f = 450$ Mc, $I_{C} = 2$ ma, $R_{G} = 100$ ohms                                                                         |        |      |      |        | 4    |        | 6    | db   |
| NF                            | Noise Figure<br>See Note 6                                    | $egin{array}{ll} { m V} &= { m 6V}, & { m f1} = { m Gc}, \\ { m I} { m CE} &= { m 2 ma}, & { m R} { m _G} &= { m 50 \ ohms} \end{array}$ |        |      | 7    |        |      |        |      | db   |





2N3570 2N3571 2N3572

### TYPICAL PERFORMANCE CURVES AT 25°C



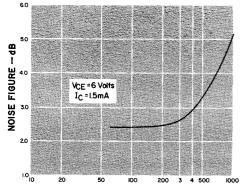
#### TYPICAL SCATTERING PARAMETERS



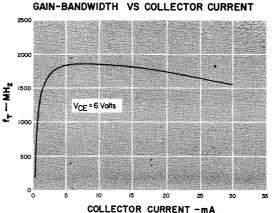




# TRANSISTOR SPECIFICATIONS


#### **GENERAL DESCRIPTION:**

The KMC 2N3683 is a double-diffused, NPN Silicon transistor designed for low-level, low noise UHF amplifier applications. Exceptional performance in Converter and Oscillator circuitry in the UHF range is also a feature of this device.


A TO-72 package having a fourth lead connected to the case for grounding and shielding purposes is used. All active elements are isolated from the case.

#### **ABSOLUTE MAXIMUM RATINGS:**

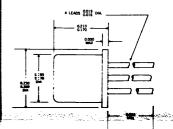
# NOISE FIGURE VS FREQUENCY GAIN-BANDWIDTH VS COLLECT

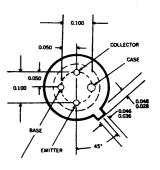


FREQUENCY - MHz



#### **FEATURES:**


N.F. - 4.5 dB Max. at


450 MHz

Ft - 1000 MHz

Gpe - 12.5 dB Min. gain

at 450 MHz





All elements isolated from case...fourth lead grounded to case.

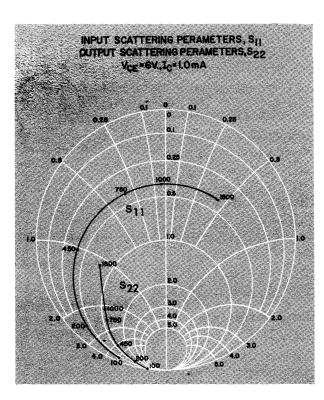
ING. ERICH SOMMER

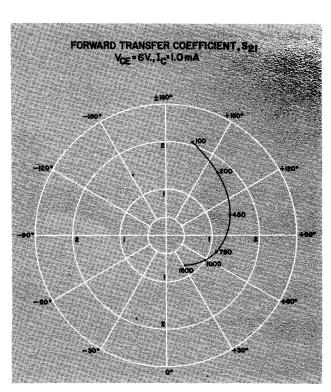
ELEKTRONIK-GMBH

GFRANKFURT/M. 1

JAHNSTRASSE 43




KMC SEMICONDUCTOR CORPORATION a subsidiary of Harvard Industries, Inc.


Parker Road, Long Valley, New Jersey 07853 (201) 876–3811, TWX 510 235–3350

# 2N3683

## **ELECTRICAL PARAMETERS AT 25°c**

| SYMBOL            | PARAMETER                              | TEST CONDITIONS                                                         | MIN. | MAX. | UNITS   |
|-------------------|----------------------------------------|-------------------------------------------------------------------------|------|------|---------|
| BV <sub>CBO</sub> | collector-base breakdown               | 1 <sub>C</sub> = 100μa                                                  | 30   | _    | volts   |
| BV <sub>EBO</sub> | emitter-base breakdown                 | Ι <sub>Ε</sub> = 100μα                                                  | 2.0  | _    | volts   |
| I <sub>CBO</sub>  | collector cutoff current               | V <sub>CB</sub> = 15 volts                                              | -    | .05  | $\mu$ a |
| h <sub>FE</sub>   | current transfer ratio                 | $I_C$ = 3 mA, $V_{CE}$ = 1 v                                            | 20   | 300  | -       |
| Ft                | 100 MHz current transfer ratio         | $I_C$ = 5 mA, $V_{CE}$ = 6 v                                            | 1000 | _    | MHz     |
| C <sub>cb</sub>   | Output capacitance guarded measurement | V <sub>CB</sub> = 10 volts                                              | -    | 1.0  | pf      |
| G <sub>pe</sub>   | small signal power gain                | $f = 450 \text{ MHz } V_{CE} = 6 \text{ v}$<br>$I_{C} = 1.5 \text{ mA}$ | 12.5 | -    | dB      |
| NF                | Noise figure                           | $I_{C}$ = 1.5 mA $V_{CE}$ = 6 v f = 450 MHz                             | -    | 4.5  | dB      |
| NF                | Noise figure                           | $I_{C} = 1.5 \text{ mA}, V_{CE} = 10 \text{ v}$<br>f = 200 MHz          |      | 3.0  | dB      |
| G <sub>pe</sub>   | Small signal power gain                | $I_{C}$ = 1.5 mA, $V_{CE}$ = 10 v f = 200 MHz                           | 15   | _    | dB      |



