### Halbleiterdioden

## Erläuterungen zu den technischen Daten

Die angegebenen Daten gelten im allgemeinen für eine Temperatur von  $25\,^{\circ}\text{C}$ .

#### Kennwerte

Ströme und Spannungen in Durchlaßrichtung sind durch den Index F, für Sperrichtung durch den Index R gekennzeichnet.

| I,             | Durchlaßstrom    |  |
|----------------|------------------|--|
| $\dot{I}_R$    | Sperrstrom       |  |
| $\hat{U}_{F}$  | Durchlaßspannung |  |
| Ü <sub>R</sub> | Sperrspannung    |  |
| c              | Diodenkapazitāt  |  |
|                |                  |  |

Q Güte,  $Q = 1/(2 \pi \omega CR_s)$  mit  $R_s = Serienwiderstand$ 

#### Grenzwerte

```
maximal zulässiger Mittelwert des Durchlaßstromes
IFAV
       maximal zulässiger Spitzenwert des Durchlaßstromes
I_{FM}
       maximal zulässiger Mittelwert des Ausgangsstromes
I_0
       maximal zulässiger Spitzenwert des Ausgangsstromes
I_{OM}
       maximal zulässige Sperrspannung (Gleich- oder Mittelwert)
       maximal zulässiger Spitzenwert der Sperrspannung
       Grenzscheitelsperrspannung, Scheitelwert einer sinusförmigen
       Sperrspannung
Utr RMS maximal zulässiger Effektivwert der Transformator-
       Wechselspannung
       maximal zulässige Umgebungstemperatur
8<sub>U</sub>
       maximal zulässige Sperrschichttemperatur
8,
```

### Germanium-

|                      |                             | nwerte                          |                 |     |
|----------------------|-----------------------------|---------------------------------|-----------------|-----|
| Тур                  | Anwendung                   | $U_F$ bei $I_F = 10 \text{ mA}$ | $I_R$ bei $U_R$ |     |
|                      |                             | <b>v</b>                        | μA              | ٧   |
| AA 119¹)             | Demodulator-<br>schaltungen | 1,5                             | 90              | 45  |
| AAZ 15²)             |                             | < 0,45                          | < 100           | 100 |
| AAZ 172)             | Schalter •                  | < 0,45                          | < 300           | 75  |
| AAZ 18²)             |                             | < 0,41                          | < 50            | 20  |
| OA 81 <sup>2</sup> ) | Allzweckdioden              | 1,4                             | 100             | 115 |
| OA 85²)              | Alizweckulodeli             | 1,15                            | 120             | 115 |
| OA 90                | Demodulator-<br>schaltungen | 1,0                             | 300             | 30  |
| OA 91                | Allzweckdioden              | 1,2                             | 100             | 115 |
| 0A 95                | Allzweckdloden              | 1,05                            | 120             | 115 |

<sup>1)</sup> paarweise für Ratiodetektor- und Diskriminator-Schaltungen

#### dioden

|           |                  | Grenzwerte     | Grenzwerte      |    |  |  |  |  |
|-----------|------------------|----------------|-----------------|----|--|--|--|--|
| $I_{FAV}$ | I <sub>F M</sub> | U <sub>R</sub> | U <sub>RM</sub> | *U |  |  |  |  |
| m A       | mA               | V              | v               | °C |  |  |  |  |
| 35        | 100              | 30             | 45              | 60 |  |  |  |  |
| 140       | 250              | 75             | 100             | 85 |  |  |  |  |
| 140       | 250              | 50             | 75              | 85 |  |  |  |  |
| 180       | 300              | 20             | 20              | 75 |  |  |  |  |
| 50        | 150              | 90             | 115             | 75 |  |  |  |  |
| 30        | 45               | 20             | 30              | 75 |  |  |  |  |
| 50        | 150              | 90             | 115             | 75 |  |  |  |  |

<sup>&</sup>lt;sup>2</sup>) nicht für Neuentwicklungen

#### Silizium-

|          |                                                         |                        | Kenn           | werte    |                         |
|----------|---------------------------------------------------------|------------------------|----------------|----------|-------------------------|
| Typ      | Anwendung                                               | <i>U<sub>F</sub></i> b | ei $I_{\it F}$ | $I_R$ be | ei <i>U<sub>R</sub></i> |
|          |                                                         | V                      | mA             | μΑ       | V                       |
| BA 1001) | Allzweckdiode                                           | 0,9                    | 30             | < 10     | 60                      |
| BA 145   | Klemmdiode<br>in FS-Empfängern                          | < 1                    | 100            | < 10     | 300                     |
| BA 148   | Phasenvergleichs-<br>diode für Horizontal-<br>Ablenkung | < 1                    | 100            | < 10     | 300                     |
| BA 182   | Schaltdiode für<br>Kanalwähler                          | < 1,2                  | 100            | < 0,1    | 20                      |
| BA 216   | Begrenzer- und<br>Stabilisierungs-<br>schaltungen       | < 0,8                  | 3              | < 1,5    | 10                      |
| BA 217   |                                                         | < 1                    | 10             | < 0,2    | 30                      |
| BA 218   | Allzweckdioden                                          | < 1                    | 10             | < 0,2    | 50                      |
| BA 219   |                                                         | < 0,85                 | 10             | < 0,5    | 100                     |
| BAY 10   | Schalter                                                | < 1                    | 200            | < 0,1    | 60                      |
| BAW 56   | Schalter<br>(Doppeldiode)                               | < 1,3                  | 100            | < 0,03   | 25                      |
| BAW 62   | Schalter                                                | <1                     | 100            | < 5      | 75                      |

<sup>1)</sup> nicht für Neuentwicklungen

254

#### dioden

|                  |                        | Grenzwert      | e                |          |
|------------------|------------------------|----------------|------------------|----------|
| I <sub>FAV</sub> | I <sub>F M</sub><br>mA | U <sub>R</sub> | U <sub>R M</sub> | β,<br>°C |
| 18               | 100                    | 60             | 60               | 90       |
| 300              | 2000                   |                | 350              | 125      |
| 300              | 2000                   |                | 350              | 125      |
| 100              | 100                    | 35             | 35               | 125      |
| 75               | 150                    | 10             | 10               | 200      |
| 75               | 150                    | 30             | 30               | 200      |
| 75               | 150                    | 50             | 50               | 200      |
| 100              | 300                    | 100            | 100              | 200      |
| 300              | 600                    | 60             | 60               | 200      |
| 50               | 100                    | 25             | 50               | 125      |
| 100              | 225                    | 75             | 75               | 200      |

|           |           |                        | Keni           | werte           |     |
|-----------|-----------|------------------------|----------------|-----------------|-----|
| Тур       | Anwendung | <i>U<sub>F</sub></i> b | ei $I_{\it F}$ | $I_R$ bei $U_R$ |     |
|           |           | V                      | mA             | μΑ              | V   |
| BAX 12    | Allzweck  | < 1                    | 200            | < 0,1           | 90  |
| BAX 13    | Schalter  | < 1                    | 20             | < 0,2           | 50  |
| BAX 15    |           | < 1                    | 100            | < 0,2           | 150 |
| BAX 16    | Allzweck  | < 1,3                  | 100            | < 0,1           | 150 |
| BAX 17    |           | < 1,1                  | 100            | < 0,1           | 150 |
| BAX 18    | Allzweck  | < 2                    | 2 A            | < 100           | 75  |
| 1 N 914   |           | < 1                    | 10             | < 5             | 75  |
| 1 N 914 A | Schalter  | < 1                    | 20             | < 5             | 75  |
| 1 N 914 B |           | < 1                    | 100            | < 5             | 75  |
| 1 N 916   | Ocharter  | < 1                    | 10             | < 5             | 75  |
| 1 N 916 A |           | < 1                    | 20             | < 5             | 75  |
| 1 N 916 B |           | < 1                    | 30             | < 5             | 75  |
| 1 N 4148  | Schalter  | < 1                    | 10             | < 5             | 75  |
| 1 N 4150  | Schalter  | < 1                    | 200            | < 0,1           | 50  |
| 1 N 4151  | Schalter  | < 1                    | 50             | < 0,05          | 50  |
| 1 N 4154  | Schalter  | < 1                    | 30             | < 0,1           | 25  |
| 1 N 4446  | Schalter  | < 1                    | 20             | < 5             | 75  |
| 1 N 4448  | Ochaller  | < 1                    | 100            | < 5             | 75  |

|              | Grenzwerte             |                |                 |                |  |  |  |
|--------------|------------------------|----------------|-----------------|----------------|--|--|--|
| $I_{FAV}$ mA | I <sub>F M</sub><br>mA | U <sub>R</sub> | U <sub>RM</sub> | <i>ჵ,</i><br>℃ |  |  |  |
| 400          | 800                    | 90             | 90              | 200            |  |  |  |
| 75           | 150                    | 50             | 50              | 200            |  |  |  |
| 250          | 500                    | 150            | 180             | 200            |  |  |  |
| 200          | 300                    | 150            | 150             | 200            |  |  |  |
| 200          | 300                    | 200            | 200             | 200            |  |  |  |
| 350          | 2000                   | 75             | 75              | 200            |  |  |  |
| 75           | 225                    | 75             | 100             | 175            |  |  |  |
| 75           | 225                    | 75             | 75              | 200            |  |  |  |
| 300          | 600                    | 50             | 50              | 200            |  |  |  |
| 200          | 450                    | 50             | 75              | 200            |  |  |  |
| 200          | 450                    | 25             | 25              | 200            |  |  |  |
| 150          | 450                    | 75             | 75              | 200            |  |  |  |

#### Silizium-Abstimm-

|                |                               |                | Grenzwerte       |          |
|----------------|-------------------------------|----------------|------------------|----------|
| Typ            | Anwendung                     | U <sub>R</sub> | U <sub>R M</sub> | მე<br>°C |
| BA 102 gelb    |                               |                |                  |          |
| BA 102 blau    |                               |                | 20               | 90       |
| BB 104 grün    | Abstimmung<br>im UKW-Bereich  | 30             | 30               | 100      |
| BB 104 blau    | (Zweifachdiode)               |                |                  | 100      |
| BB 105 A       | Abstimmung                    |                |                  |          |
| BB 105 B       | bis Bereich V                 | 28             | 30               | 100      |
| BB 105 G       | Abstimmung<br>bis Bereich III |                |                  |          |
| BB 106         | Abstimmung<br>bis Bereich III | 28             | 30               | 60       |
| BB 110         | Abstimmung                    | 30             | 30               | 100      |
| BB 110 schwarz | im UKW-Bereich                | "              | 50               |          |

### und Nachstimm-Dioden

|                 |         | Keni    | ıwerte                  |     |                            |      |
|-----------------|---------|---------|-------------------------|-----|----------------------------|------|
| C bei U         | R       | $I_R$ b | ei <i>U<sub>R</sub></i> | Q   | bei <i>U<sub>R</sub></i> u | nd f |
| pF              |         | μA      | _ v                     | 1   | V                          | MHz  |
| 24 30<br>17 21  | 4<br>10 | < 2     | 20                      | 65  |                            |      |
| 30 37<br>21 26  | 4<br>10 |         | 20                      | 65  | 4                          | 50   |
| 34 39<br>14     | 3<br>30 | < 0,02  | 30                      | 140 | 3                          | 100  |
| 37 42<br>14     | 3<br>30 | 0,02    |                         | 140 | ,                          | 100  |
| 11,5<br>2,3 2,8 | 3<br>25 |         |                         | 65  |                            |      |
| 11,5<br>2,0 2,3 | 3<br>25 | < 0,1   | 28                      | 55  | 3                          | 470  |
| 11,5<br>1,8 2,8 | 3<br>25 |         |                         | 100 | 3                          | 200  |
| > 20<br>4,0 5,6 | 3<br>25 | < 0,05  | 28                      | 100 | 3                          | 200  |
| 27 31<br>11     | 3<br>30 | < 0,02  | 30                      | 175 | 3                          | 100  |
| 29 33<br>11     | 3<br>30 | 1 3,02  |                         | .,, |                            | 100  |

#### Siliziem-

|                                        | T                | Kennwerte |       |                         |  |  |  |
|----------------------------------------|------------------|-----------|-------|-------------------------|--|--|--|
| Typ                                    | U <sub>F</sub> b |           | l     | ei <i>U<sub>R</sub></i> |  |  |  |
|                                        | V                | mA        | μΑ    | V                       |  |  |  |
| BY 118                                 | < 1,2            | 14 A      | < 100 | 300                     |  |  |  |
| BY 127                                 | < 1,5            | 5 A       | < 10  | 1250                    |  |  |  |
| BY 176                                 | < 35             | 100       | < 7   | 15 kV                   |  |  |  |
| BY 184                                 | < 5              | 100       | < 10  | 1500                    |  |  |  |
| BY 185                                 | < 120            | 200       | < 5   | 31 kV                   |  |  |  |
| BY 187                                 | < 26             | 100       | < 4   | 10 kV                   |  |  |  |
| BYX 10                                 | < 1,6            | 2 A       | < 50  | 800                     |  |  |  |
| BYX 36/150<br>BYX 36/300<br>BYX 36/600 | 1,1              | 5 A       | < 120 | 100<br>200<br>400       |  |  |  |

## Silizium-Gleichrichter

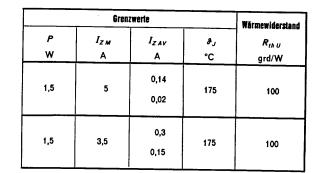
|        |                                 | Grenzwerte |                       |         |  |  |
|--------|---------------------------------|------------|-----------------------|---------|--|--|
| Typ    | U <sub>t</sub> , <sub>RMS</sub> | I₀<br>mA   | I <sub>0 M</sub><br>A | ჵე<br>℃ |  |  |
| BY 164 | 60                              | 1150       | 5                     | 150     |  |  |
| BY 179 | 280                             | 825        | 5                     | 125     |  |  |

### Gleichrichterdioden

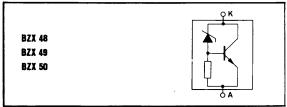
|                   |                   | Grenzwert              | e                |                 |
|-------------------|-------------------|------------------------|------------------|-----------------|
| U <sub>RWM</sub>  | U <sub>R M</sub>  | I <sub>FAV</sub><br>mA | I <sub>F M</sub> | <b>8</b> ,<br>℃ |
|                   | 300               | 5 A                    | 14 A             | 150             |
| 800               | 1250              | 1 A                    | 10 A             | 150             |
| 15 kV             | 15 kV             | 2,5                    | 250              | 95              |
| 1500              | 1800              | 2                      | 100              | 75              |
| 35 kV             | 35 kV             | 2,5                    | 200              | 85              |
| 10 kV             | 10 kV             | 2                      | 200              | 85              |
| 800               | 1600              | 360                    | 3 A              | 150             |
| 100<br>200<br>400 | 150<br>300<br>600 | 800                    | 5 A              | 125             |

## in Brückenschaltung

| Betriebswerte            |                            |                     |                 |                     |  |
|--------------------------|----------------------------|---------------------|-----------------|---------------------|--|
| U <sub>tr RMS</sub><br>V | <i>С<sub>L</sub></i><br>µF | R <sub>t</sub><br>Ω | <i>I₀</i><br>mA | U <sub>o</sub><br>V |  |
| 31                       | 4000                       | 0,5                 | 1150            | 38,5                |  |
| 220                      | 400                        | 4                   | 750             | 300                 |  |


|                                                    | Kennwerte |                   |                               |                      |  |
|----------------------------------------------------|-----------|-------------------|-------------------------------|----------------------|--|
| Typ                                                | bei Iz    | Uz                | $\Delta U_Z/\Delta \vartheta$ | rz                   |  |
|                                                    | mA        | V                 | mV/grd                        | Ω                    |  |
| BZX 61/C 6 V 8                                     | 20        | 6,8<br>bis        | 2,7                           | < 5,5                |  |
| BZX 61/C 75                                        | 5         | 75                | 60                            | 135                  |  |
| BZX 70/C 10<br>bis                                 | 50        | 10<br>bis         | 7                             | < 4                  |  |
| BZX 70/C 75                                        | 10        | 75                | 70                            | < 100                |  |
| BZX 75/C 1 V 4<br>BZX 75/C 2 V 1<br>BZX 75/C 2 V 8 | 10        | 1,4<br>2,1<br>2,8 | 3,3<br>5,0<br>6,6             | < 10<br>< 15<br>< 20 |  |
| BZX 75/C 3 V 6                                     |           | 3,6               | 8,2                           | < 25                 |  |
| BZX 79/C 4 Y 7                                     | 5         | 4,7<br>bis        | - 1,4                         | < 80                 |  |
| BZX 79/C 75                                        | 2         | 75                | 60                            | < 255                |  |
| BZY 78                                             | 11,5      | 5,3               | ≈ 0                           | 18                   |  |
| BZY 88/C 3 V 3                                     | 5         | 3,3<br>bis        | - 2,3                         | < 110                |  |
| BZY 88/C 30                                        | 5         | 30                | + 26                          | < 95                 |  |
| BZY 91/C 10 (R)<br>bis                             | 2000      | 10<br>bis         | 9                             | < 0,4                |  |
| BZY 91/C 75 (R)                                    | 500       | 75                | 71                            | < 2,6                |  |
| BZY 93/C 7 V 5 (R)                                 | 2000      | 7,5<br>bis        | 3                             | < 0,3                |  |
| BZY 93/C 75 (R)                                    | 200       | 75                | 70                            | < 10,5               |  |

<sup>1)</sup> Betrieb in Durchlaßrichtung


|        | Grenzwerte       |                  |                  |                                          |  |
|--------|------------------|------------------|------------------|------------------------------------------|--|
| P<br>W | I <sub>Z M</sub> | I <sub>ZAV</sub> | <i>\$</i> .<br>℃ | Wärmewiderstand  R <sub>th U</sub> grd/W |  |
| 1      | 3                | 0,14<br>0,0125   | 175              | 150                                      |  |
| 2,5    | 5                | 0,235<br>0,03    | 150              | 50                                       |  |
| 0,4    | 0,25             |                  | 175              | 350                                      |  |
| 0,4    |                  | 0,08<br>0,005    | 200              | 440                                      |  |
| 0,28   | 0,025            | 0,025            | 150              | 450                                      |  |
| 0,4    | 0,25             | 0,1<br>0,0125    | 175              | 310                                      |  |
| 75     | 100              | 7,0<br>1,0       | 175              | $R_{th O} = 1,47$                        |  |
| 20     | 20               | 2,5<br>0,25      | 175              | R <sub>th 0</sub> = 5                    |  |

|                       | Kennwerte |            |                               |       |  |
|-----------------------|-----------|------------|-------------------------------|-------|--|
| Тур                   | bei $I_Z$ | $U_Z$      | $\Delta U_Z/\Delta \vartheta$ | rz    |  |
|                       | mA        | ٧          | mV/grd                        | Ω     |  |
| BZY 95/C 10<br>bis 1) | 50        | 10<br>bis  | 7                             | < 4   |  |
| BZY 95/C 75           | 10        | 75         | 70                            | < 100 |  |
| BZY 96/C 4 V 7        | 100       | 4,7<br>bis | - 0,6                         | < 10  |  |
| BZY 96/C 9 V 1        | 50        | 9,1        | 6,4                           | < 4,5 |  |

<sup>1)</sup> nicht für Neuentwicklungen



## Silizium-



1) nicht für Neuentwicklungen

264

Referenzschaltungen 1)

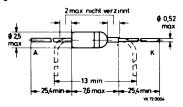
|                                                              | BZX 48: | BZX 49: | BZX 50: |         |
|--------------------------------------------------------------|---------|---------|---------|---------|
| $U_Z$ bei $I_Z = 2 \text{ mA}$ :                             | 6,5     | 6,5     | 6,5     | ٧       |
| $(\Delta U_z/U_z)/\Delta \vartheta_U$ :                      | 1       | 2       | 5×10    | )-5/grd |
| $\Delta U_Z (\mathcal{F}_U = 0 \dots 70 ^{\circ}\text{C})$ : | 4,5     | 9,1     | 22,5    | mV      |
| $r_Z$ bei $I_Z = 2 \text{ mA}$ :                             | 20      | 20      | 20      | Ω       |

#### Mikrowellen-Mischdieden

| miki va olioli misonalonoli         |                                  |                 |                            |                  |  |
|-------------------------------------|----------------------------------|-----------------|----------------------------|------------------|--|
|                                     | Typ                              | Frequenzbereich | Rauschzahl                 | Mischverluste    |  |
|                                     | AAY 34                           | 26 40 GHz       | 8,5 dB                     | 5,5 dB           |  |
| 표                                   | 86 YAA<br>A 96 YAA               | 1 18 GHz        | 6 dB<br>7 dB               | 4,2 dB<br>5,0 dB |  |
| Germanium-Punktkontakt              | AAY 50<br>AAY 50 R               | bis 12 GHz      | 6,2 dB                     | 4,4 dB           |  |
| anium-P                             | AAY 51<br>AAY 51 R               | 12 18 GHz       | 7 dB                       | 5,2 dB           |  |
| Gern                                | AAY 52<br>AAY 52 R               | 12 18 GHz       | 8 dB                       | 5,2 dB           |  |
|                                     | AAY 56<br>AAY 56 R               | bis 4 GHz       | 7 dB                       |                  |  |
| Silizium-<br>Schotiky-Barrier       | BAW 95 D<br>BAW 95 E<br>BAW 95 F | 8 12 GHz        | 7,8 dB<br>7,2 dB<br>6,8 dB |                  |  |
| 흗흗                                  | CAY 13                           | bis 12 GHz      | 6,5 dB                     | 4,5 dB           |  |
| Galliumarsenid-<br>Schottky-Barrier | CAY 14                           | bis 12 GHz      | 6,5 dB                     | 4,5 dB           |  |
| 25 E                                | CAY 15                           | bis 12 GHz      | 6,5 dB                     | 4,5 dB           |  |

#### **Varaktordioden**

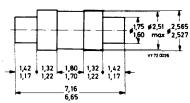
|                | Тур      | Frequenz    | Ausgangs-<br>Leistung | max.Verlust-<br>Leistung | max. Sperr-<br>spannung |  |
|----------------|----------|-------------|-----------------------|--------------------------|-------------------------|--|
|                | BAY 661) | bis 1 GHz   | 10 W                  | 12 W                     | 100 V                   |  |
|                | BAY 96   | bis 500 MHz | 20 W                  | 20 W                     | 120 V                   |  |
| Silizium       | BXY 27   | bis 2 GHz   | > 5 W                 | 4 W                      | 55 V                    |  |
| ŽIIS           | BXY 28   | bis 4 GHz   | > 3,5 W               | 3,5 W                    | 45 V                    |  |
|                | BXY 29   | bis 12 GHz  | > 0,3 W               | 1 W                      | 25 V                    |  |
|                | BXY 32   | bis 12 GHz  | 20 mW                 | 1 W                      | 20 V                    |  |
| 핕              | CAY 10   | bis 50 GHz  |                       | 50 mW                    | 6 V                     |  |
| Galliumarsenid | CXY 10   | bis 50 GHz  |                       | 50 mW                    | 6 V                     |  |
| gal            | CXY 12   | bis 50 GHz  | > 50 mW               | 0,3 W                    | 10 V                    |  |


<sup>1)</sup> nicht für Neuentwicklungen

#### Gunn-Effekt-Elemente für Mikrowellen-Oszillatoren

| Тур      | Frequenzbereich | Ausgangsleistung |
|----------|-----------------|------------------|
| CXY 11 A |                 | 8 (> 5) mW       |
| CXY 11 B | 8 12 GHz        | 12 (> 10) mW     |
| CXY 11 C | •               | 20 (> 15) mW     |
| CXY 13 D | 8 12 GHz        | 25 (> 20) mW     |
| CXY 13 E | 612 GH2         | 35 (> 30) mW     |
| CXY 14 A |                 | 8 (> 5) mW       |
| CXY 14 B | 12 18 GHz       | 12 (> 10) mW     |
| CXY 14 C |                 | 20 (> 15) mW     |

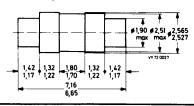
# AA 119, AAZ 15, AAZ 17, AAZ 18, BA 100, BA 102, BZX 75, BZY 78, BZY 88, OA 90, OA 91. OA 95:


Gehäuse: Aliglas (DO-7) Farbring: Katodenseite



#### **AAY 34:**

Gehäuse: Metall/Keramik

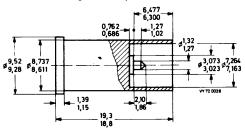

Die Katodenseite ist rot gekennzeichnet.



#### AAY 39, AAY 39 A, CAY 15:

Gehäuse: Metall/Keramik

Die Katodenseite ist rot gekennzeichnet.

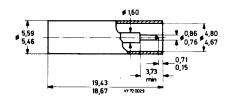



#### AAY 50:

Anode am Gehäuse, roter Farbpunkt

#### **AAY 50 R:**

Katode am Gehäuse, grüner Farbpunkt

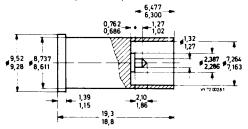



#### **AAY 51. AAY 52:**

Anode am Gehäuse, roter Farbpunkt

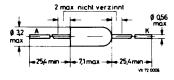
#### AAY 51 R. AAY 52 R:

Katode am Gehäuse, blauer Farbpunkt




#### **AAY 56:**

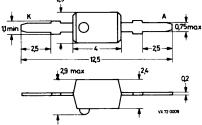
Anode am Gehäuse, roter Farbpunkt


#### AAY 56 R:

Katode am Gehäuse, grüner Farbpunkt

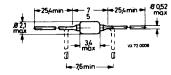


#### BA 145, BA 148, BYX 10:


Gehäuse: Kunststoff (DO-14)

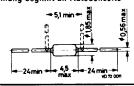


#### BA 182, BB 105, BB 106, BB 110:


Gehäuse: Kunststoff (SOD-23)

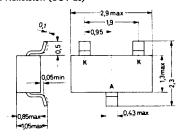
Warze: Katodenseite 25



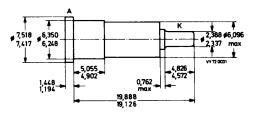

BA 216, BA 217, BA 218, BA 219, BAX 12, BAX 13, BAX 15, BAX 16, BAX 17, BAX 18, 1 N 914, 1 N 914 A, 1 N 914 B, 1 N 916, 1 N 916 A, 1 N 916 B: Gehäuse: Hartqlas (SOD-17)

Farbkennzeichnung beginnt an Katodenseite



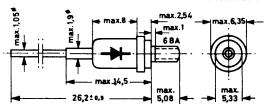

BAV 10, BAW 62, BZX 79, 1 N 4148, 1 N 4150, 1 N 4151, 1 N 4154, 1 N 4446, 1 N 4448: Gehäuse: Aligias (D0-35)

Farbkennzeichnung beginnt an Katodenseite




#### BAW 56:

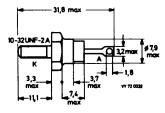
Gehäuse: Kunststoff (SOT-23)




### BAW 95, CAY 14:

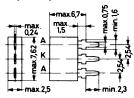


#### BAY 66:


Gehäuse: Metall. Die Katode ist mit dem Gehäuse verbunden.

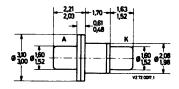


#### BAY 96:


Gehäuse: Metall (D0-4)

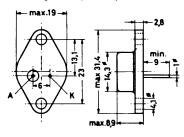
Die Katode ist mit dem Gehäuse verbunden.




#### BB 104:

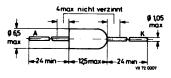
Gehäuse: Kunststoff (SOT-33)




### BXY 27, BXY 28, BXY 29, BXY 32, CAY 10:

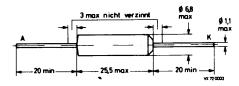
Gehäuse: Metall/Keramik




#### BY 118:

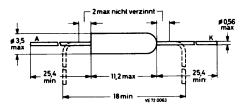
Katode am Metallgehäuse (SOT-9/2)




#### BY 127, BZX 70:

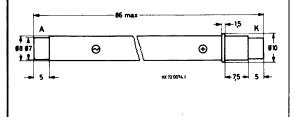
Gehäuse: Kunststoff (SOD-18)




#### BY 176:

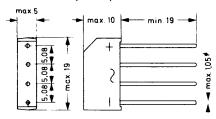
Gehäuse: Kunststoff (SOD-33)




#### BY 184, BY 187:

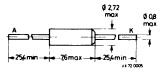
Gehäuse: Kunststoff




#### BY 185:

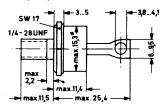
Gehäuse: Kunststoff




#### BY 164, BY 179:

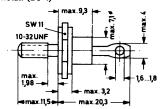
Gehäuse: Kunststoff (SOD-28)




#### BYX 36. BZX 61:

Gehäuse: Kunststoff (DO-15)

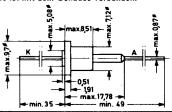



BZY 91/... (Katode am Gehäuse) BZY 91/... R (Anode am Gehäuse)

Gehäuse: Metall (D0-5)

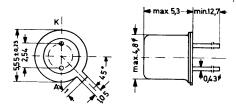


BZY 93/... (Katode am Gehäuse)
BZY 93/... R (Anode am Gehäuse)


Gehäuse: Metall (D0-4)

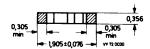


#### BZY 95. BZY 96:


Gehäuse: Metall (D0-1)

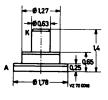
Die Katode ist mit dem Gehäuse verbunden.




#### BZX 48, BZX 49, BZX 50:

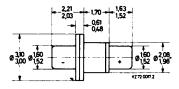
Gehäuse: Metall, T0-18, aber 2 Anschlüsse Die Katode ist mit dem Gehäuse verbunden.




**CAY 13:** 

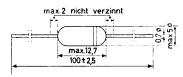





#### CXY 10, CXY 12:

Gehäuse: Metall/Keramik




### CXY 11, CXY 13, CXY 14:

Gehäuse: Metall/Keramik



OA 81. OA 85:

Gehäuse: Allglas (SOD-6/1) Farbring: Katodenseite



#### **Transistoren**

## Erläuterungen zu den technischen Daten

Die angegebenen Daten gelten im allgemeinen für eine Temperatur von 25 °C.

#### Elektroden

Basis . . . . B. b Emitter . . . E. e Kollektor . . C. c





Grundschaltungen

PNP-Transistor

**NPN-Transistor** 

Emitterschaltung: Basisschaltung:

Eingang und Ausgang haben den Emitter als gemeinsame Anschlußelektrode

Eingang und Ausgang haben die Basis als gemein-

same Anschlußelektrode

Kollektorschaltung: Eingang und Ausgang haben den Kollektor als ge-

meinsame Anschlußelektrode

In Fällen, in denen eine besondere Kennzeichnung der Schaltung erforderlich ist, werden die Kurzzeichen mit kleinen Indizes e, b oder c versehen.

#### Ströme und Spannungen

Basisstrom

Basisstrom, Mittelwert Basisstrom, Scheitelwert  $I_{BM}$ 

Kollektorstrom Ic.

Ic Av Kollektorstrom, Mittelwert Kollektorstrom, Scheitelwert

 $I_{CM}$ Emitterstrom

 $I_{E}$ Emitterstrom, Mittelwert Emitterstrom, Scheitelwert

Bei Restströmen geben die beiden Indizes für die Elektroden den Stromkreis an, in dem gemessen wird, der zusätzliche Index kennzeichnet den Zustand der dritten Elektrode, z. B.

Kollektor-Reststrom bei offenem Emitter I<sub>CB 0</sub>  $I_{FBO}$ Emitter-Reststrom bei offenem Kollektor

I<sub>CF 0</sub> Kollektor-Emitter-Reststrom bei offener Basis

 $I_{CFV}$ Kollektor-Emitter-Reststrom bei gesperrter Emitterdiode Bei Spannungsangaben werden zwei Indizes verwendet; der zweite Index gibt den Bezugspunkt an, das Vorzeichen gilt für die Spannung gegen diesen Bezugspunkt:

U<sub>CE</sub> Kollektorspannung gegen Emitter

 $U_{EB}$  Emitterspannung gegen Basis (es ist auch  $U_{EB} = -U_{BE}$ )

UCE sat Kollektor-Emitter-Restspannung¹)

Soweit erforderlich, erfolgt eine Kennzeichnung durch weitere Indizes, z. B.

UCEO Kollektor-Emitter-Spannung bei offener Basis

U<sub>CER</sub> Kollektor-Emitter-Spannung bei Widerstandsabschluß der

Emitterdiode

 $U_{CBS}$  Kollektor-Basis-Spannung bei kurzgeschlossener Emitterdiode

#### Allgemeine Formeizeichen

| Kleinsignal-Kurzschluß-Stromverstärkung in Emitterschaltung . β   |   |
|-------------------------------------------------------------------|---|
| Gleichstromverstärkung in Emitterschaltung                        |   |
| Grenzfrequenz in Basisschaltung $f_{\alpha}$                      |   |
| Grenzfrequenz in Emitterschaltung $f_{\beta}$                     |   |
| Transitfrequenz $(f_T \approx f_1) \dots f_T$                     |   |
| Rauschzahl                                                        |   |
| Sperrschichttemperatur                                            |   |
| (Transistor-) Gehäusetemperatur                                   |   |
| Umgebungstemperatur                                               |   |
| Wärmewiderstand zwischen Sperrschicht und Umgebung Rth            | , |
| Wärmewiderstand zwischen Sperrschicht und Gehäuse R <sub>th</sub> | ( |

#### Grenzwerte

Alle Grenzwerte sind absolute  ${\tt Grenzwerte}$  .

Der Grenzwert für die Verlustleistung ergibt sich aus

$$P_{tot\ max} = (\partial_{J\ max} - \partial_{U})/R_{th\ U}$$

bzw.

282

$$P_{tot\ max} = (\partial_{J\ max} - \partial_{G})/R_{th\ G},$$

auf keinen Fall darf der als Grenzwert angegebene  $P_{tot \, max}$ -Wert überschritten werden.

#### Betriebswerte

Eine für kleine Signale hinreichende Beschreibung eines Transistors kann durch die Angabe von vier Koeffizienten eines Vierpol-Ersatzschaltbildes erfolgen. Für Niederfrequenz wird die (h)-Matrix verwendet. Die Werte sind für die Basis- und Emitterschaltung verschieden und gelten jeweils für einen bestimmten Arbeitspunkt; die Schaltung wird durch ein e. b oder c im Index gekennzeichnet.

$$u_1 = h_{11} i_1 + h_{12} u_2$$
  
 $i_2 = h_{21} i_1 + h_{22} u_2$ 

Kurzschluß-Eingangswiderstand  $h_{11} = (u_1/i_1)_{u_2} = 0$ 

Leerlauf-Spannungsrückwirkung  $h_{12} = (u_1/u_2)_{i_1} = 0$ 

Kurzschluß-Stromverstärkung  $h_{21} = (i_2/i_1)_{U_2} = 0$ 

Leerlauf-Ausgangsleitwert  $h_{22} = (i_2/u_2)_{i_1} = 0$ 

Für Hochfrequenz werden die Koeffizienten einer Leitwert-Matrix angegeben.

$$i_1 = y_{11}u_1 + y_{12}u_2$$
  
 $i_2 = y_{21}u_1 + y_{22}u_2$   
 $y_{ik} = g_{ik} + jb_{ik}$ 

Kurzschluß-Eingangsleitwert  $y_{11} = (i_1/u_1)_{u_2} = 0$ 

Rückwärtssteilheit  $y_{12} = (i_1/u_2)_{u_1} = 0$ 

Vorwärtssteilheit  $y_{21} = (i_2/u_1)_{U_2} = 0$ 

Kurzschluß-Ausgangsleitwert  $y_{22} = (i_2/u_2)_{u_1} = 0$ 

Für  $y_{12}$  und  $y_{21}$  wird in vielen Fällen gesetzt

$$y_{12} = |y_{12}| e^{\int \varphi_{12}} \text{ und } y_{21} = |y_{21}| e^{\int \varphi_{21}}$$

Die Umrechnungsbeziehungen von der (y)-Matrix zur (h)-Matrix sind wie folgt:

$$\begin{aligned} y_{11} &= \frac{1}{h_{11}} & y_{12} &= -\frac{h_{12}}{h_{11}} & y_{21} &= \frac{h_{21}}{h_{11}} & y_{22} &= \frac{h_{11}h_{22} - h_{12}h_{21}}{h_{11}} \\ h_{11} &= \frac{1}{y_{11}} & h_{12} &= -\frac{y_{12}}{y_{11}} & h_{21} &= \frac{y_{21}}{y_{21}} & h_{22} &= \frac{y_{11}y_{22} - y_{12}y_{21}}{y_{21}} \end{aligned}$$

Die Kollektor-Emitter-Restspannung ist etwa jene Spannung zwischen Kollektor und Emitter, bei der die Kollektordiode vom Durchlaßbereich in den Sperrbereich übergeht.