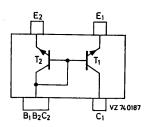
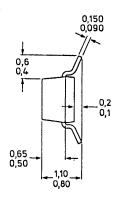
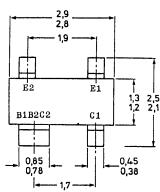
SILIZIUM - NPN - PLANAR - EPITAXIAL - TRANSISTOR

kombiniert mit Emitterdiode zur Temperaturkompensation,


u.a. für Stromspiegelschaltungen


Mechanische Daten:


Gehäuse: Kunststoff, SOT-143

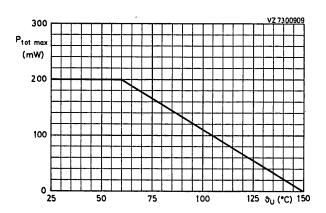
Stempel: D 91

Maßangaben in mm.

Kurzdaten:

Kollektor-Emitter-Sperrspannung Emitter-Sperrspannung Kollektorstrom, Scheitelwert Gesamtverlustleistung bei $\vartheta_{U} \stackrel{\leq}{=} 60^{\circ} \text{C}$ Sperrschichttemperatur

Gleichstromverstärkung bei $\rm U_{C1E1} = 5$ V, $\rm I_{C1} = 2$ mA Transit-Frequenz


bei $U_{C1E1} = 5 \text{ V}$, $I_{C1} = 10 \text{ mA}$

B = 100...800

f_T = 300 MHz

Absolute Grenzwerte:	Transistor	<u>T1</u> <u>T2</u>	
Kollektor-Sperrspannung bei I _E = 0:	U _{CB 0} = max.	30	v
Kollektor-Emitter-Sperrspannung bei I _R = 0:	$U_{CE \ 0} = max.$	30	v
Emitter-Sperrspannung bei U _{CB} = 0:	U _{EBS} = max.	6 6	v
Kollektorstrom, Mittelwert:	$I_{C \text{ AV}} = \text{max.}$	100 100	mA
Kollektorstrom, Scheitelwert:	$I_{CM} = max.$	200 200	mA
Basisstrom, Scheitelwert:	$I_{BM} = max.$	200	mA
Gesamtverlustleistung bei $\vartheta_{\text{U}} \stackrel{\leq}{=} 60^{\circ}\text{C}$: 1)	$P_{tot} = max.$	200	mW
Sperrschichttemperatur:	$\vartheta_{J} = \max$	150	°C
Lagerungstemperatur:	$\vartheta_{S} = \min.$	-65	°C
	$\theta_{S} = \max$	150	°C
Wärmewiderstand:			
zwischen Sperrschicht und den Anschlüssen:	$R_{th J/A} =$	60	K/W
zwischen den Anschlüssen	th J/A		
und den Lötflächen des Substrats:	$R_{th A/S} =$	280	K/W
zwischen Substrat und Umgebung: 1)	$R_{th S/U} =$	90	K/W

¹⁾ BCV 61 auf Keramik-Substrat von 8 mm x 10 mm x 0,7 mm

Kennwerte: bei $\vartheta_J = 25^{\circ}C$, sofern nicht anders angegeben

Transistor T1

Kollektor-Reststrom bei
$$I_E = 0$$
, $U_{CB} = 30$ V; $S_J = 150^{\circ}C$: $I_{CB} = 0 \le 5$ μA

Kollektor-Emitter-Restspannung bei $I_C = 100$ mA, $I_B = 0.5$ mA: U_{CE} sat $I_C = 200$ $I_C = 30$ mV bei $I_C = 100$ mA, $I_B = 0.5$ mA: $I_C = 100$ mA, $I_C = 100$ mA; $I_C = 100$ mA;

Leerlauf-Ausgangsleitwert:

 $^{
m h}_{
m 22e}$

 μS

30

 $[\]overline{1}$) $\Delta U_{BE \ sat}/\Delta \vartheta_{J} \approx -2 \text{ mV/K}$

²) $\Delta U_{BE}/\Delta \vartheta_{J} \approx -1.7 \text{ mV/K}$

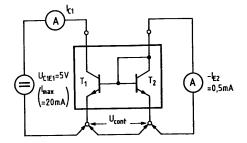
bei $\vartheta_J = 25^{\circ}C$, sofern nicht anders angegeben Kennwerte, Fortsetzung:

Transistor T 2

bei
$$-I_E = 250 \text{ mA}$$
:

$$\begin{array}{ccc} \mathbf{U}_{\mathrm{BE}} & \stackrel{\geq}{=} & \mathbf{0,4} & \mathbf{V} \\ \mathbf{U}_{\mathrm{BE}} & \stackrel{\leq}{\leq} & \mathbf{1,8} & \mathbf{V} \end{array}$$

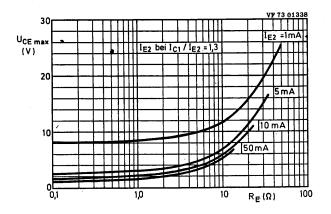
Transistoren T 1 und T 2


Stromverhältnis
bei
$$-I_{E2} = 0.5$$
 mA und $U_{C1E1} = 5$ V
und $\vartheta_U = 25$ °C:
und $\vartheta_U = 150$ °C:

$$I_{C1}/-I_{E2} = 0,7...1,3$$

 $I_{C1}/-I_{E2} = 0,7...1,3$

Thermische Kopplung zwischen T1 und T2 1) (ohne Emitterwiderstand)

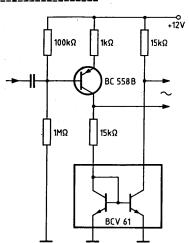

$$-I_{E2 X} = 5 \text{ mA}$$

$$U_{cont} \leq 16 \text{ mV}^2$$

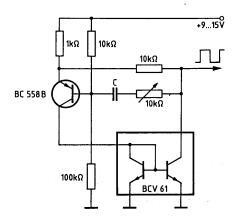
¹⁾ Transistor auf Keramik-Substrat von 8 mm x 10 mm x 0,7 mm

 $^{^2}$) entsprechend $^2/_3$ U_T

Dieses Datenblatt gibt keine Auskunft über Liefermöglichkeiten.
Die angegebenen Daten dienen allein der Produktbeschreibung und sind nicht als zugesicherte Eigenschaften im Rechtssinne aufzufassen. Etwaige Schadensersatzansprüche gegen uns – gleich aus welchem Rechtsgrund – sind ausgeschlossen, soweit uns nicht Vorsatz oder grobe Fahrlässigkeit trifft.
Es wird keine Gewähr übernommen, daß die angegebenen Schaltungen oder Verfahren frei von Schutzgebten Pitter eine rechten Dritter sind.


Ein Nachdruck - auch auszugsweise - ist nur zulässig mit Zustimmung des Herausgebers und mit genauer Quellenangabe.

Anwendungsbeispiele:


Grundschaltung eines Stromspiegels

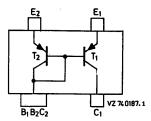
Eingang Ausgang I₁=I_{C1}+I₆₁+I₆₂ I₂=I_{C2}=B·I₆₂ I₃ I₄=I_{C1}+I₆₁+I₆₂ I₅ I₆ I₇ I₈ I₈

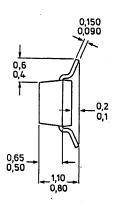
Verstärkerstufe mit "gespiegeltem" Gegentakt-Ausgang

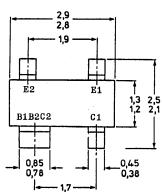
Multivibratorschaltung mit gespiegeltem Kaskodeverstärker

SILIZIUM - PNP - PLANAR - EPITAXIAL - TRANSISTOR

Rombiniert mit Emitterdiode zur Temperaturkompensation,


u.a. für Stromspiegelschaltungen


Mechanische Daten:


Gehäuse: Kunststoff, SOT-143

Stempel: C 91

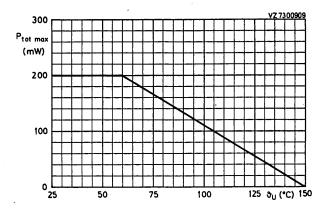
Maßangaben in mm.

Kurzdaten:

Kollektor-Emitter-Sperrspannung
Emitter-Sperrspannung
Kollektorstrom, Scheitelwert
Gesamtverlustleistung bei $\vartheta_{TI} \stackrel{\leq}{=} 60^{\circ} C$
Sperrschichttemperatur

$$\begin{array}{l} {\rm Transit-Frequenz} \\ {\rm bei} \ -{\rm U_{C1E1}} \ = \ 5 \ {\rm V,} \ -{\rm I_{C1}} \ = \ 10 \ {\rm mA} \end{array}$$

$$-U_{C1E1 \ 0} = max.$$
 30 V
 $-U_{E2B2 \ S} = max.$ 6 V


$$^{-1}$$
_{C1 M} = max. 200 mA
 P_{tot} = max. 200 mW

$$\vartheta_{\mathbf{J}}$$
 = max. 150 °C

$$f_{T} = 150 \text{ MHz}$$

Absolute Grenzwerte:	<u>Transistor</u>	<u>T1</u> <u>T2</u>	
Kollektor-Sperrspannung bei I _E = 0:	$-U_{CB \ 0} = max.$	30	v
Kollektor-Emitter-Sperrspannung bei I _R = 0:	$-U_{CE\ 0} = max.$	30	v
Emitter-Sperrspannung bei U _{CR} = 0:	$-U_{EBS} = max.$	6 6	v
Kollektorstrom, Mittelwert:	$-I_{C \text{ AV}} = \text{max}.$	100 100	m.A
Kollektorstrom, Scheitelwert:	$-I_{CM} = max.$	200 200	mA
Basisstrom, Scheitelwert:	$-I_{BM} = max.$	200	mA
Gesamtverlustleistung bei $\vartheta_{U} \stackrel{\leq}{=} 60^{\circ} \text{C}:$ 1)	$P_{tot} = max.$	200	mW
Sperrschichttemperatur:	$\vartheta_{J} = \max$	150	°c
Lagerungstemperatur:	$\vartheta_{S} = \min.$	-65	°c
	$\vartheta_{S} = \max.$	150	°c
Wärmewiderstand:			
zwischen Sperrschicht und den Anschlüssen:	$R_{th J/A} =$	60	K/W
zwischen den Anschlüssen			4
und den Lötflächen des Substrats:	$R_{th A/S} =$	280	K/W
zwischen Substrat und Umgebung: 1)	$R_{th S/U} =$	90	K/W

¹⁾ BCV 62 auf Keramik-Substrat von 8 mm x 10 mm x 0,7 mm

bei $\theta_{T} = 25^{\circ}C$, sofern nicht anders angegeben Transistor T 1 Kollektor-Reststrom $\begin{array}{ccc}
-\mathbf{I}_{CB & 0} & \stackrel{\leq}{\leq} \\
-\mathbf{I}_{CB & 0} & \stackrel{\leq}{\leq}
\end{array}$ bei $I_E = 0$, $-U_{CB} = 30 \text{ V}$: 15 bei $I_E = 0$, $-U_{CR} = 30 \text{ V}$, $\vartheta_I = 150^{\circ}\text{C}$: μА Kollektor-Emitter-Restspannung 75 (≦ 300) bei $-I_C = 10 \text{ mA}, -I_B = 0.5 \text{ mA}$: $-U_{CE \text{ sat}} =$ mV 250 (≦ 650) bei $-I_C = 100 \text{ mA}$, $-I_B = 5 \text{ mA}$: -U_{CE sat} = mV Basisspannung mv 1) bei $-I_C = 10 \text{ mA}, -I_B = 0.5 \text{ mA}$: $-U_{ ext{BE sat}} =$ 700 mv 1) bei $-I_C = 100 \text{ mA}, -I_B = 5 \text{ mA}$: 850 $-U_{BE sat} =$ mV^2) bei $-U_{CE} = 5 \text{ V}$, $-I_{C} = 2 \text{ mA}$: = 650 (600...750)-U_{RE} mv^2) bei $-U_{CE} = 5 \text{ V}$, $-I_{C} = 10 \text{ mA}$: -U_{RE} 820 Gleichstromverstärkung bei $-U_{CE} = 5 \text{ V}, -I_{C} = 100 \mu\text{A}$: 100 В bei $-U_{CE} = 5 \text{ V}$, $-I_{C} = 2 \text{ mA}$: В 100...800 Transit-Frequenz bei $-U_{CE} = 5 \text{ V}$, $-I_{C} = 10 \text{ mA}$, $f_{M} = 35 \text{ MHz}$: 150 MHz f Kollektorkapazität bei $-U_{CR} = 10 \text{ V}$, $I_{E} = 0$, f = 1 MHz: Cc 4,5 рF Rauschzahl bei $-U_{CE} = 5 \text{ V}$, $-I_{C} = 200 \text{ } \mu\text{A}$, $R_{g} = 2 \text{ } k\Omega$ und f = 1 kHz, B = 200 Hz: 2 (≦ 10) F dΒ Vierpol-Koeffizienten bei $-U_{CE} = 5 \text{ V}, -I_{C} = 2 \text{ mA}, f = 1 \text{ kHz}$: Kurzschluß-Eingangswiderstand: kΩ ^h11е 3 • 10 Leerlauf-Spannungsrückwirkung: ^h12е Kurzschluß-Stromverstärkung: ^h21e 100...900 50 μS Leerlauf-Ausgangsleitwert: $^{
m h}_{
m 22e}$

 $^{^{1})\}quad \Delta(-\mathrm{U_{BE\ sat}})/\Delta\vartheta_{\mathrm{J}}\approx-\ 2\ \mathrm{mV/K} \qquad \qquad ^{2})\quad \Delta(-\mathrm{U_{BE}})/\Delta\vartheta_{\mathrm{J}}\approx-\ 1.7\ \mathrm{mV/K}$

Kennwerte, Fortsetzung: bei 8, = 25°C, sofern nicht anders angegeben

Transistor T 2

bei
$$I_E = 10 \mu A$$
:
bei $I_R = 250 \mu A$:

$$\begin{array}{cccc}
-U_{\text{BE}} & \stackrel{?}{=} & 0,4 & V \\
-U_{\text{BE}} & \stackrel{\checkmark}{=} & 1,5 & V
\end{array}$$

Transistoren T 1 und T 2

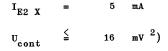
bei
$$I_{E2} = 0.5$$
 mA und $-U_{C1E1} = 5$ V bei $\vartheta_U = 25$ °C:
bei $\vartheta_U = 150$ °C:

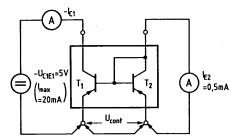
bei
$$I_{E2} = I_{E2} \stackrel{\checkmark}{\times} 50 \text{ mA}$$

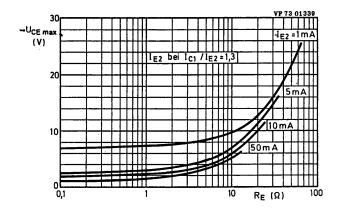
und $-U_{C1E1} = 5 \text{ V}, -I_{C1} \stackrel{\checkmark}{\leq} 50 \text{ mA}$:

Maximaler Strom I_{E2}

Spannungsdifferenz


von 8 mm x 10 mm x 0,7 mm
²) entsprechend
$$^2/_3$$
 U_T


Keramik-Substrat


$$-I_{C1}/I_{E2} = 0,7...1,3$$

$$-I_{C1}/I_{E2} = 0,7...1,3$$

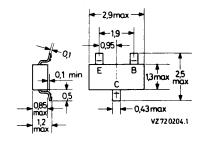
$$2^{-1}$$

Dieses Datenblatt gibt keine Auskunft über Liefermöglichkeiten.
Die angegebenen Daten dienen allein der Produktbeschreibung und sind nicht als zugesicherte Eigenschaften im Rechtssinne aufzufassen. Etwaige Schadensersatzansprüche gegen uns – gleich aus welchem Rechtsgrund – sind ausgeschlossen, soweit uns nicht Vorsatz oder grobe Fahrlässigkeit trifft.
Es wird keine Gewähr übernommen, daß die angegebenen Schaltungen oder Verfahren frei von Schutzrechten Dritter sind.

Ein Nachdruck - auch auszugsweise - ist nur zulässig mit Zustimmung des Herausgebers und mit genauer Quellenangabe.

SILIZIUM - NPN - PLANAR - EPITAXIAL - NF - TRANSISTOREN

Mechanische Daten:


Gehäuse: Kunststoff, SOT-23

23 A 3 DIN 41 869

Stempel: BCV 71: K 7

BCV 72: K 8

Maßangaben in mm.

<u>Kurzdaten:</u>

Kollektor-Sperrspannung
Kollektor-Emitter-Sperrspannung
Kollektorstrom, Scheitelwert

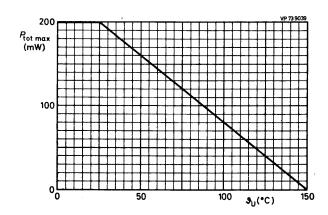
Gesamtverlustleistung bei $\vartheta_{II} \stackrel{\leq}{=} 25^{\circ} C$

 ${\bf Spers chich ttemperatur}$

Gleichstromverstärkung bei $U_{CE} = 5$ V, $I_{C} = 2$ mA

 $\begin{array}{ll} {\tt Transit-Frequenz} \\ {\tt bei} \ {\tt U_{CE}} = \ 5 \ {\tt V,} \ {\tt I_{C}} = \ 10 \ {\tt mA} \end{array}$

 $\mathbf{U}_{\mathbf{CB}}$ 0 60 = max. v UCE 0 60 $\mathbf{I}_{\mathbf{C} \ \mathbf{M}}$ = max. 200 mA Ptot 200 mW $^{\rm o}{\rm c}$ ${}^{\vartheta}_{\mathbf{J}}$ 150 = max.


BCV 71 BCV 72

B = 110...220 200...450

_Γ ≐ 300

BCV 71 BCV 72

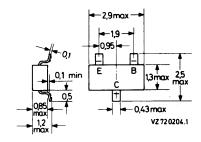
```
(gültig bis \vartheta_{J \max})
Absolute Grenzwerte:
Kollektor-Sperrspannung bei I_E = 0:
                                                                        UCB 0
                                                                                  = max.
Kollektor-Emitter-Sperrspannung
                               bei I_B = 0, I_C = 2 mA:
                                                                        UCE O
                                                                                              60
                                                                                  = max.
Emitter-Sperrspannung
                               bei I_C = 0:
                                                                        UEB O
                                                                                               5
                                                                                                   v
                                                                                  = max.
Kollektorstrom, Mittelwert:
                                                                        I<sub>C</sub> AV
                                                                                             100
                                                                                  = max.
                                                                                                   mA
Kollektorstrom, Scheitelwert:
                                                                        I<sub>C M</sub>
                                                                                             200
                                                                                                   mA
                                                                                  = max.
Gesamtverlustleistung bei \vartheta_{II} \stackrel{\leq}{=} 25^{\circ}C: 1)
                                                                                             200
                                                                                                   mW
Sperrschichttemperatur:
                                                                                                   °C
                                                                         ₽<sub>J</sub>
                                                                                             150
Lagerungstemperatur:
                                                                        {}^{\vartheta}\mathbf{s}
                                                                                                   °c
                                                                                            -65
                                                                                    min.
                                                                                                   ^{\rm o}{\rm c}
                                                                                             150
                                                                        9<sub>S</sub>
                                                                                    max.
Wärmewiderstand:
                                                                        R_{th \ U} \leq 0,62 \ K/mW
zwischen Sperrschicht und Umgebung:
```


¹⁾ Transistor auf Keramik-Substrat von 7 mm x 5 mm x 0,5 mm

Kennwerte:				BCV 71 BCV 72	
bei $\vartheta_{J} = 25^{\circ}C$, sofern nicht anders angegeben					•
Kollektor-Reststrom			<		
bei $I_E = 0$, $U_{CB} = 20 \text{ V}$	I _{СВ}	0	=	100	nA
bei $I_E = 0$, $U_{CB} = 20 \text{ V}$, $\vartheta_J = 100^{\circ}\text{C}$:	$\mathbf{I}_{\mathbf{CB}}$	0	=	10	$\mu \mathbf{A}$
Kollektor-Emitter-Restspannung				ζ,	
bei $I_C = 10$ mA, $I_B = 0.5$ mA:	$\mathbf{u}_{\mathbf{CE}}$	sat	=	$120 \ (\stackrel{\zeta}{=}\ 250)$	mV
bei $I_C = 50$ mA, $I_B = 2.5$ mA:	$\mathbf{u}_{\mathbf{CE}}$	sat	=	210	mV
Basisspannung					
bei $I_C = 10$ mA, $I_B = 0.5$ mA:	$\mathbf{u}_{\mathbf{BE}}$	sat	=	750	mV
bei $I_C = 50$ mA, $I_R = 2,5$ mA:		sat		850	шV
bei $U_{CE} = 5 \text{ V}$, $I_{C} = 2 \text{ mA}$:	$\mathbf{u}_{\mathbf{BE}}$		=	550700	mV
Gleichstromverstärkung					
bei $U_{CE} = 5 \text{ V}$, $I_{C} = 10 \mu \text{A}$:	В		=	90 150	
bei $U_{CE} = 5 \text{ V}, I_{C} = 2 \text{ mA}$:	В		=	110220 2004	50
Transit-Frequenz					
bei $U_{CE} = 5 \text{ V}$, $I_{C} = 10 \text{ mA}$, $f_{M} = 35 \text{ MHz}$:	f _T		=	300	MHz
Kollektorkapazität			′		
bei $U_{CB} = 10$ V, $I_{E} = 0$, $f = 1$ MHz:	$^{\mathbf{c}}\mathbf{_{c}}$		≦	4	pF
Rauschzahl					
bei $U_{CE} = 5$ V, $I_{C} = 200$ μ A			/		
und $R_g = 2 k\Omega$, $f = 1 kHz$, $B = 200 Hz$:	F		=	10	dВ

Kennlinien siehe BCW 31/32/33

SILIZIUM - PNP - PLANAR - EPITAXIAL - NF - TRANSISTOR

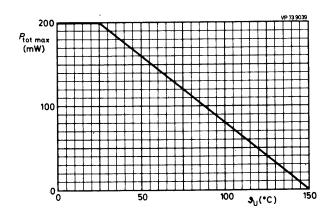

Mechanische Daten:

Gehäuse: Kunststoff, SOT-23 23 A 3 DIN 41 869

Stempel: H 3
Maßangaben in mm.

Kurzdaten:

bei $-U_{CE} = 5 \text{ V}, -I_{C} = 10 \text{ mA}$



Kollektor-Sperrspannung -UCB O v = max. Kollektor-Emitter-Sperrspannung -U_{CE} o Kollektorstrom, Scheitelwert -I_{C M} 200 mA Gesamtverlustleistung bei $\vartheta_{\Pi} \stackrel{\leq}{=} 25^{\circ}C$ Ptot 200 mW $^{\rm o}{}_{\rm C}$ Sperrschichttemperatur 150 max. Gleichstromverstärkung bei $-U_{CE} = 5 \text{ V}, -I_{C} = 2 \text{ mA}$ 120...260 Transit-Frequenz

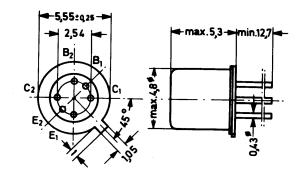
150 MHz

BCW 89

```
(gültig bis \vartheta_{J \text{ max}})
Absolute Grenzwerte:
Kollektor-Sperrspannung bei I_E = 0:
                                                                                                 60
                                                                           -U_{CB} = max.
Kollektor-Emitter-Sperrspannung bei U_{RE} = 0:
                                                                           -U_{CE\ S} = max.
                                bei I_B = 0, -I_C = 2 \text{ mA}:
                                                                           -U_{CE\ 0} = max.
Emitter-Sperrspannung
                                bei I_C = 0:
                                                                           -U_{EB} = max.
Kollektorstrom, Mittelwert:
                                                                           -I_{C \text{ AV}} = \text{max.}
                                                                                                100 mA
Kollektorstrom, Scheitelwert:
                                                                           -I_{CM} = max.
                                                                                                200
                                                                                                      mA
Gesamtverlustleistung bei \vartheta_{II} \stackrel{\leq}{=} 25^{\circ}C: 1)
                                                                                                200
Sperrschichttemperatur:
                                                                           {}^{\vartheta}_{\mathbf{J}}
                                                                                                       °C
                                                                                                150
                                                                                     = max.
                                                                                                       °c.
Lagerungstemperatur:
                                                                           \theta_{S}
                                                                                     = min.
                                                                                                -65
                                                                                                       °c
                                                                           \vartheta_{\mathbf{S}}
                                                                                                150
                                                                                     = max.
Wärmewiderstand:
                                                                           R_{\mathbf{th}} \quad \stackrel{\leq}{=} \quad
zwischen Sperrschicht und Umgebung:
                                                                                           0,62 K/mW
```


 $^{^{1})}$ Transistor auf Keramik-Substrat von 7 mm x 5 mm x 0,5 mm

<u>Kennwerte</u> : bei $\vartheta_J = 25^{\circ}$ C, sofern nicht anders angegeben								
Kollektor-Reststrom								
bei $I_E = 0$, $-U_{CB} = 20$ V:	-I _{CB} o	≦	100	nA				
bei $I_E = 0$, $-U_{CB} = 20 \text{ V}$, $\vartheta_J = 100^{\circ}\text{C}$:	-1 _{СВ 0}	≦	10	$\mu \mathbf{A}$				
Kollektor-Emitter-Restspannung			,					
bei $-I_C = 10 \text{ mA}, -I_B = 0,5 \text{ mA}$:	-U _{CE} sat	. =	80 (= 300)	mV				
bei $-I_C = 50$ mA, $-I_B = 2.5$ mA:	-U _{CE} sat		150	mV				
Basisspannung								
bei $-I_C = 10 \text{ mA}, -I_B = 0.5 \text{ mA}$:	$^{-\mathrm{U}}_{\mathrm{BE}}$ sat	; =	720	mV				
bei $-I_C = 50$ mA, $-I_B = 2.5$ mA:	-UBE sat		810	mV				
bei $-U_{CE} = 5 \text{ V}$, $-I_{C} = 2 \text{ mA}$:	-UBE	=	600750	mV				
Gleichstromverstärkung								
bei $-U_{CE} = 5$ V, $-I_{C} = 10$ μ A:	В	=	90					
bei $-U_{CE} = 5$ V, $-I_{C} = 2$ mA:	В	=	120260					
Transit-Frequenz								
bei $-U_{CE} = 5$ V, $-I_{C} = 10$ mA, $f_{M} = 35$ MHz:	$\mathbf{f}_{\mathbf{T}}$	=	150	MHz				
Kollektorkapazität		,						
bei $-U_{CB} = 10 \text{ V}, I_{E} = 0, f = 1 \text{ MHz}$:	$^{\mathrm{c}}{}_{\mathbf{c}}$	≦	7	\mathbf{pF}				
Rauschzahl								
bei $-U_{CE} = 5$ V, $-I_{C} = 200$ μ A		,						
und $R_g = 2 k\Omega$, $f = 1 kHz$, $B = 200 Hz$:	F	=	10	đВ				

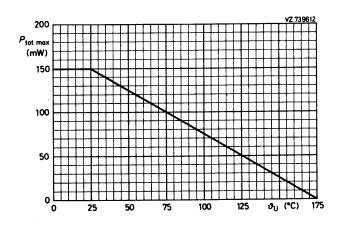

Kennlinien siehe BCW 29/30

SILIZIUM - NPN - PLANAR - DOPPELTRANSISTOREN für Differenzverstärker

Mechanische Daten:

Gehäuse: Metall
JEDEC T0-71
Alle Anschlüsse sind
vom Gehäuse isoliert.
Maßangaben in mm.

Kurzdaten:		-				
Doppeltransistor			BCY 87	BCY 88	BCY 89	9
Verhältnis						
der Kollektorströme	I _{C1} /I _C	2 =	0,9-1,11	0,8-1,25	0,67-1	, 5
Eingangs-Fehl spannung	$\mathbf{U}_{\mathbf{F}}$	≦	3	6	10	\mathbf{mV}
Temperaturkoeffizient der Eingangs-Fehlspannung	ΔU _F /Δθ ₁	. ≦	3	6	10	μV/K
Eingangs-Fehlstrom	I _F	ິ ≦	25	80	300	nA
Temperaturkoeffizient des Eingangs-Fehlstromes	ΔΙ _F /Δθ _Ι	, ≦	0,5	2	10	nA/K
Verhältnis der Gleichstromverstärkungen	B ₁ / B ₂		0,9-1,11	0,8-1,25		
Einzeltransistoren						,
Kollektor-Sperrspannung	^U св о	=	max.	45		v
Kollektor-Emitter-Sperrspannung	UCE O	=	max.	40		v
Gesamtverlustleistung	Ptot	=	max.	150		mW
Gleichstromverstärkung						
bei $U_{CB} = 10 \text{ V}$, $I_{C} = 50 \mu A$	В	=	100-450	100-450	100-450)
bei $U_{CB} = 10 \text{ V}, I_{C} = 10 \text{ mA}$	В	=			100-600)
Transit-Frequenz		>				•
bei $U_{CB} = 10 \text{ V}, -I_{E} = 50 \mu\text{A}$	$\mathbf{f}_{\mathbf{T}}$	<u>≥</u>		10		MHz
bei $U_{CB} = 10 \text{ V}$, $-I_{E} = 500 \mu \text{A}$	fT	≟		50	-	MHz
Breitband-Rauschzahl		≦				
bei $U_{CE} = 5 \text{ V}, I_{C} = 50 \mu\text{A}$	F	=	3	4	4	dΒ


BCY 87 BCY 88 BCY 89

Absolute Grenzwerte, Einzeltransistoren: (gültig bis $\delta_{J max}$)

Kollektor-Sperrspannung bei $I_E = 0$:	U _{CB} 0	= max.	45	V
Kollektor-Emitter-Sperrspannung bei Ip = 0:	UCE O	= max.	40	v
Emitter-Sperrspannung bei I _C = 0:	UEB 0	= max.	5	V
Kollektorstrom:	$^{\mathbf{I}}\mathbf{c}$	= max.	30	mA
Gesamtverlustleistung:	P_{tot}	= max.	150	mW
Sperrschichttemperatur:	$\theta_{ m J}$	= max.		
Lagerungstemperatur:	₽ _S	= max.	175	°C

Wärmewiderstand, Einzeltransistoren:

Wärmewiderstand zwischen Sperrschicht und Umgebung: R $_{
m th~U} \stackrel{ ext{ ext{$\left}}}{=}$ 1 K/mW

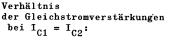
Kennwerte, Einzeltransistoren:

bei $\vartheta_{\text{U}} = 25^{\circ}\text{C}$, sofern nicht anders angegeben

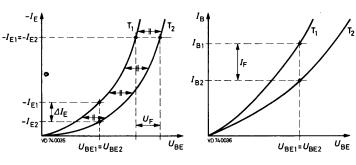
•			BCY 87	BCY 88	BCY 89	
Kollektor-Reststrom	т	≤	_		10	4
bei $U_{CB} = 20 \text{ V}, I_{E} = 0$:	ICB 0	=	•		10	nA
bei $U_{CB} = 20 \text{ V}, I_{E} = 0$ und $\vartheta_{U} = 90 \text{ C}$:	ICB 0	≦	5	20		nA
Gleichstromverstärkung						
bei $U_{CB} = 10 \text{ V}$ und $I_{C}^{CB} = 5 \mu\text{A}$:	В	≧	80			
und $I_C = 50 \mu A$:	В	=	100450	100450	100450	
und $I_C = 500 \mu A$:	В	=		120600		
und $I_C = 10 \text{ mA}$:	В	=			100600	
Transit-Frequenz		,				
bei U _{CB} = 10 V						
und $-I_E = 50 \mu A$:	$\mathbf{f}_{\mathbf{T}}$	<u>}</u>		10		MHz
und $-I_{\overline{E}} = 500 \mu A$:	f	≧		50		MHz
Kollektorkapazität						
bei $U_{CB} = 10 \text{ V}$, $I_{E} = 0$ und $f = 1 \text{ MHz}$:		≦		0 15		_
und I = I MHZ:	$^{\mathrm{C}}_{\mathrm{c}}$	=		3,5		\mathbf{pF}
Rauschzahl						
bei $U_{CE} = 5 \text{ V}, I_{C} = 50 \mu\text{A},$						
f = 1 kHz, B = 200 Hz		≦				
und $R_g = R_{g \text{ opt}}$:	F	=	4	5	5	dΒ
Breitband-Rauschzahl						
bei $U_{CE} = 5$ V, $I_{C} = 50$ μ A,						
$R_{\alpha} = 10 \text{ k}\Omega$,				
und f = 1015000 Hz:	F	≦	3	4	4	dΒ

BCY 87 BCY 88 BCY 89

Kennwerte, Doppeltransistor:


bei
$$U_{CB1} = U_{CB2} \stackrel{\leq}{=} 10 \text{ V}, -(I_{E1} + I_{E2}) = 10...100 \text{ }\mu\text{A}$$

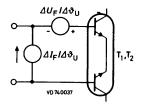
und $\vartheta_{II} = 25^{\circ}\text{C}$, sofern nicht anders angegeben

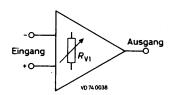

und $\vartheta_U = 25^{\circ}C$, sofern nicht	anders angegeben		BCY 87	BCY 88	BCY 89
Verhältnis der Kollektorströme bei $U_{ m BE1} = U_{ m BE2}$:	1 _{C1} / 1 _{C2}	=	0,9-1,11	0,8-1,25	0,67-1,5
$\begin{array}{l} \textbf{Eingangs-Fehlstrom} \\ \textbf{(input offset current,} \\ \textbf{Basisstrom-Differenz)} \\ \textbf{bei } \textbf{U}_{BE1} = \textbf{U}_{BE2} \textbf{:} \end{array}$	I _F = I _{B1} -I _{B2}	≦	25	80	300 nA
Temperaturkoeffizient des Eingangs-Fehlstromes bei $\vartheta_U = -20+90^{\circ}C$:	$ exttt{\Delta I}_{ exttt{F}}/ exttt{\Delta \vartheta}_{ exttt{U}}$	≦,	0,5	2	10 nA/K
Eingangs-Fehlspannung (input offset voltage, Basisspannungs-Differenz) bei I _{C1} = I _{C2} :	$\mathbf{U}_{\mathbf{F}} = \left \mathbf{U}_{\mathbf{BE1}} - \mathbf{U}_{\mathbf{BE2}} \right $	≦	3	6	10 mV
Temperaturkoeffizient					

der Eingangs-Fehlspannung bei $\vartheta_{\text{U}} = -20...+90^{\circ}\text{C}$:

$$B_1 / B_2 = 0,9-1,11 \ 0,8-1,25$$

= $1(\stackrel{\leq}{=}3)$ $2(\stackrel{\leq}{=}6)$ $4(\stackrel{\leq}{=}10) \mu V/K$

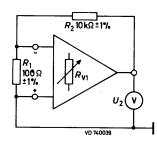



 $\Delta U_{\mathbf{F}}/\Delta \vartheta_{\mathbf{U}}$

$$\begin{split} &\mathbf{I}_{E2} \ / \ \mathbf{I}_{E1} \ = \ \exp \frac{\mathbf{q}}{\mathbf{k}\mathbf{T}} \ \mathbf{U}_{\mathbf{F}} \\ &\mathbf{I}_{E2} / \mathbf{I}_{E1} \quad \text{wird bei } \mathbf{U}_{\mathbf{F}} = \mathbf{0} \text{ gemessen, d.h. bei } \mathbf{U}_{\mathbf{BE1}} = \mathbf{U}_{\mathbf{BE2}}, \\ &\mathbf{U}_{\mathbf{F}}, \ \mathbf{d.h.} \ \left| \mathbf{U}_{\mathbf{BE2}} - \mathbf{U}_{\mathbf{BE1}} \right|, \ \mathbf{wird bei } \ \mathbf{I}_{\mathbf{E2}} / \mathbf{I}_{\mathbf{E1}} = \mathbf{1} \text{ gemessen.} \end{split}$$

Ersatzschaltung für Messung der Temperatur-Koeffizienten:

Blockschaltung des Meßverstärkers:

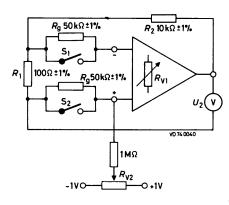


$$\begin{array}{ccc} \Delta U_{\mathbf{F}}/\Delta\vartheta_{\mathbf{U}} \colon & \text{\"aquivalente Driftspannung} \\ & (\text{\tt Quelle mit R}_{\mathbf{i}} \xrightarrow{} \mathbf{0}) \end{array}$$

$$\Delta I_F / \Delta \vartheta_U$$
: äquivalenter Driftstrom (Quelle mit $R_i \rightarrow \infty$)

T₁, T₂: driftfreie Transistoren

Messung des Temperatur-Koeffizienten der Eingangs-Fehlspannung:

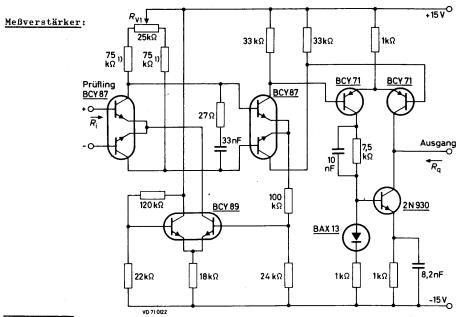

Die Verstärkung des Meßverstärkers ist gegeben durch $R_2/R_1 = 100$.

Die Temperatur des Meßverstärkers wird auf ϑ_1 zwischen -20°C und +90°C eingestellt und nach Erreichen des thermischen Gleichgewichts durch Einstellung von R_{V1} die Ausgangsspannung auf Null gebracht ($|U_{2\vartheta 1}|$ < 1 mV).

Danach wird die Temperatur auf ϑ_2 zwischen -20° C und $+90^{\circ}$ C verändert, dann gilt nach Erreichen des thermischen Gleichgewichts

$$\Delta \mathbf{U_F}/\Delta \vartheta_{\mathbf{U}} = \frac{\mathbf{U_{2\vartheta 2} - U_{2\vartheta 1}}}{\vartheta_{\mathbf{2}} - \vartheta_{\mathbf{1}}} \cdot \frac{\mathbf{R_1}}{\mathbf{R_2}}$$

Messung des Temperatur-Koeffizienten des Eingangs-Fehlstromes:



Die Verstärkung des Meßverstärkers ist gegeben durch $\rm R_2/R_1$ = 100.

Die Temperatur des Meßverstärkers wird auf ϑ_1 zwischen $-20^{\circ}\mathrm{C}$ und $+90^{\circ}\mathrm{C}$ eingestellt und nach Erreichen des thermischen Gleichgewichts durch Einstellung von R_{V1} bei geschlossenen Schaltern S_1 und S_2 sowie anschließend durch Einstellung von R_{V2} bei geöffneten Schaltern die Ausgangsspannung auf Null gebracht ($|U_{2\vartheta 1}|$ < 1 mV).

Danach wird die Temperatur auf ϑ_2 zwischen -20°C und +90°C verändert, dann gilt nach Erreichen des thermischen Gleichgewichts

$$\Delta I_{F}/\Delta \vartheta_{U} = \frac{U_{2\vartheta 2} - U_{2\vartheta 1}}{\vartheta_{2} - \vartheta_{1}} \cdot \frac{R_{1}}{R_{2}} \cdot \frac{1}{2 R_{\alpha}}$$

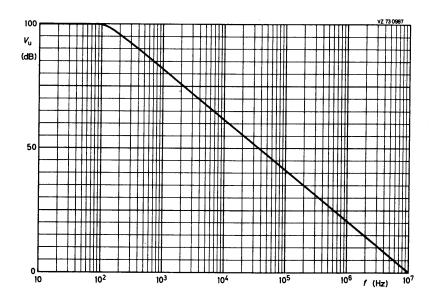
 $^{^{1}}$) Temperatur-Koeffizient TK $_{
m R}$ < $10^{-5}/{
m K}$

Daten des Meßverstärkers:

Leerlauf-Spannungsverstärkung	(bei	\mathbf{Z}_{T}	=	10	$k\Omega$):	
•		ш				

Frequenz für
$$V_u = 1$$
:

Eingangswiderstand:


$$V_{ud} = 10^{5}$$
 $f_{1} = 10 MHz$
 $U_{ic} = -10...+10 V$
 $U_{q} = -10...+10 V$
 $I_{q} = -2,5...+2,5 mA$

_ 10⁵

$$r_{\perp}$$
 = 100 $k\Omega$

$$r_q = 20 k\Omega$$

