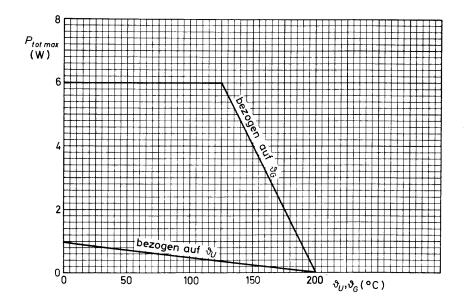


SILIZIUM - NPN - PLANAR - LEISTUNGSTRANSISTOR für NF-Endstufen in A-Betrieb, für Video-Endstufen in Schwarz/Weiß-Fernsehempfängern sowie für Treiberstufen für die Horizontal-Ablenkung bei hoher Speisespannung

Mechanische Daten:

Gehäuse: Metall, JEDEC T0-39, 5 C 3 nach DIN 41 873

Der Kollektor ist mit dem Metallgehäuse verbunden.

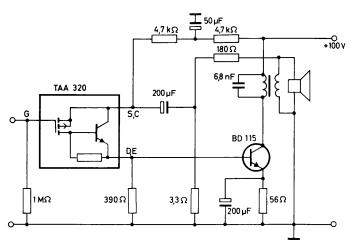

<u>Kurzdaten</u> :			
Kollektor-Sperrspannung	$U_{CB \ 0} = max.$	245	v
Kollektor-Emitter-Sperrspannung	$U_{CE\ 0} = max.$	180	v
Kollektorstrom	$I_C = max.$	150	mA.
Gesamtverlustleistung bei $\theta_G = 100^{\circ}$ C	$P_{tot} = max.$	6	W
Sperrschichttemperatur	$\vartheta_{J} = \max.$	200	o _C
Gleichstromverstärkung bei U_{CE} = 100 V, I_{C} = 50 mA	В =	60	
Transit-Frequenz bei U_{CE} = 100 V, I_{C} = 30 mA	. f _T =	145	MHz
Ausgangsleistung als A-Verstärker bei U _{bat} = 100 V	P ₂ =	2,6	W

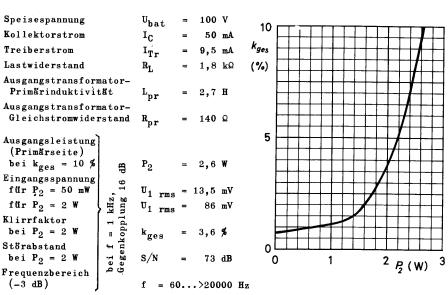
Absolute Grenzwerte: (gültig bis $\vartheta_{J \text{ max}}$)

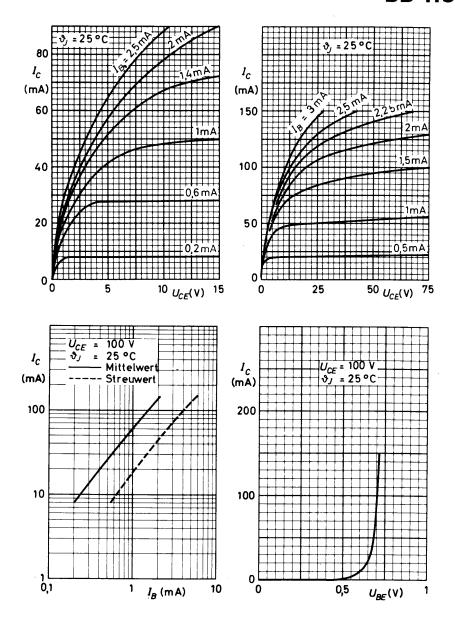
Kollektor-Sperrspannung bei I _E = 0:	U _{CB 0} = max.	245	v
Kollektor-Emitter-Sperrspannung bei $R_{RE} \leq 1 \text{ k}\Omega$:	U _{CE R} = max.		
bei $I_{\mathbf{B}} = 0$:	$U_{CE \ 0} = max.$		
Emitter-Sperrspannung bei I _C = 0:	$U_{EB \ 0} = max.$	5	V
Kollektorstrom:	$I_C = max.$	150	mA
Gesamtverlustleistung:	$P_{tot} = max.$	6	W
Sperrschichttemperatur:	$\theta_{J} = \max$	200	$^{\rm o}{\rm c}$
Lagerungstemperatur:	θ _S = min.	-55	$^{\rm o}{\rm c}$
	$\theta_{S} = \max$	200	$^{\rm o}$ C

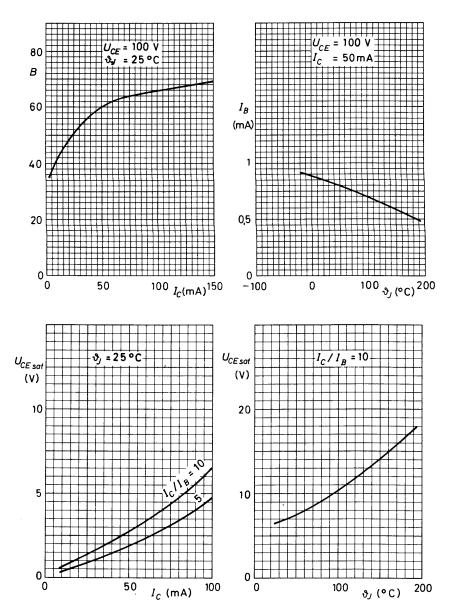
Warmewiderstand:

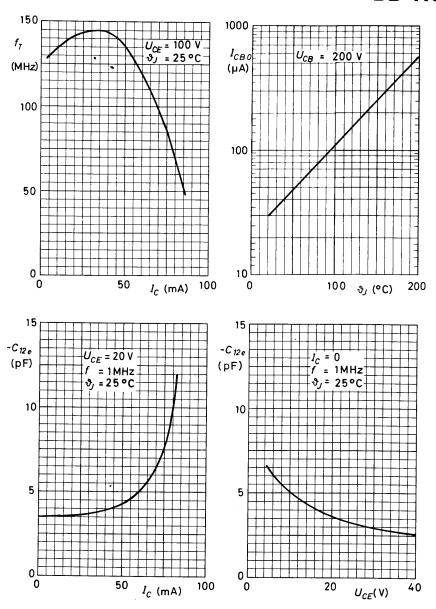
Wärmewiderstand zwischen Sperrschicht und Umgebung: R $_{\rm th~U} \stackrel{\leq}{=} 200~{\rm grd/W}$ Wärmewiderstand zwischen Sperrschicht und Gehäuseboden: R $_{\rm th~G} \stackrel{\leq}{=} 12,5~{\rm grd/W}$

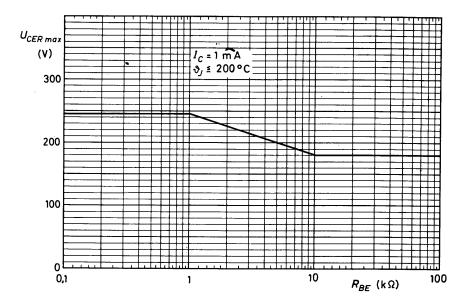

<u>Kennwerte</u>: (bei $\theta_{J} = 25^{\circ}C$, sofern nicht anders angegeben) Kollektor-Reststrom bei U_{CB} = 200 V, I_E = 0, ϑ_J = 200°C: 550 I_{CB} 0 $\mu \mathbf{A}$ Emitter-Reststrom bei $U_{EB} = 5 \text{ V}$, $I_C = 0$: I_{EB} 0 100 μA Kollektor-Emitter-Restspannung bei $I_C = 100 \text{ mA}, I_R = 10 \text{ mA}$: $6,5 \ (\le 9)$ UCE sat HF - Kollektor-Emitter-Restspannung 1) bei $I_C = 60 \text{ mA}, \vartheta_J = 150^{\circ}\text{C}$: UCE sat HF = Basisspannung 2) bei $U_{CE} = 100 \text{ V}$, $I_{C} = 50 \text{ mA}$: $\mathbf{u}_{\mathbf{BE}}$ Gleichstromverstärkung bei $U_{CE} = 100 \text{ V}$, $I_{C} = 50 \text{ mA}$: 60 (≥ 22) Verhältnis der Gleichstromverstärkung $B_{15/100}$ bei U_{CE} = 15 V, I_{C} = 100 mA und $U_{CE} = 165 \text{ V}, \tilde{I}_{C} = 10 \text{ mA}$: Transit-Frequenz bei $U_{CE} = 100 \text{ V}, I_{C} = 30 \text{ mA}$: 145 MHz fη Rückwirkungskapazität bei $U_{CE} = 20 \text{ V}$, $I_{C} = 10 \text{ mA}$, f = 1 MHz: $\mathtt{^{-C}_{1\,2e}}$ 3,5 pFRückwirkungs-Zeitkonstante 30 (≦ 100) bei $U_{CB} = 10 \text{ V}$, $-I_{E} = 10 \text{ mA}$, f = 10 MHz: rbb ' Cb'c

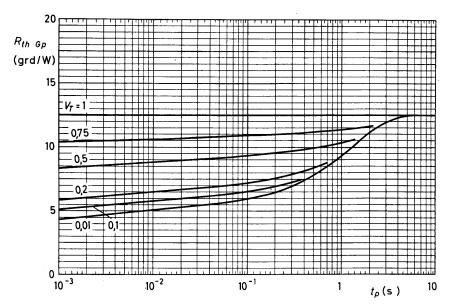

¹⁾ Die Hochfrequenz-Kollektor-Emitter-Restspannung U_{CE} sat H_F ist die jenige Kollektor-Emitter-Restspannung, bei der in einer praktischen Schaltung die Kleinsignalverstärkung auf 80 % des Wertes bei U_{CE} = 50 V abgesunken ist. Eine weitere Erniedrigung von U_{CE} ergibt ein starkes Ansteigen der Verzerrungen.

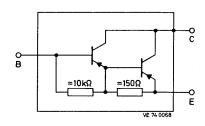

²) $\Delta U_{BE}/\Delta \vartheta_{J} \approx -2 \text{ mV/grd}$


Betriebsdaten als NF-A-Verstärker mit TAA 320 als Treiberstufe:


BD 115 mit Befestigungssatz 56 218 nicht isoliert auf Kühlblech 30 cm², 1,5 mm Aluminium geschwärzt, $\vartheta_{\Pi} \leq 50^{\circ}\text{C}$:





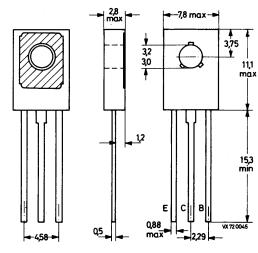


DATEN VORLÄUFIGER MUSTER ÄNDERUNGEN VORBEHALTEN

BD 262 BD 262 A

SILIZIUM - PNP - EPIBASIS -DARLINGTON - LEISTUNGSTRANSISTOREN

Mechanische Daten:


Gehäuse: Kunststoff, SOT-32 (JEDEC TO-126)

Der Kollektor ist mit der metallischen Montagefläche leitend verbunden.

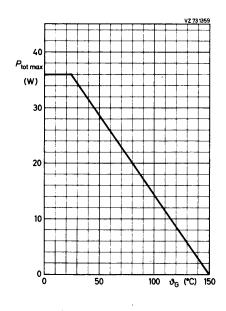
Für isolierten Einbau sind Glimmerscheibe 56 302 und Federscheibe 56 303 lieferbar.

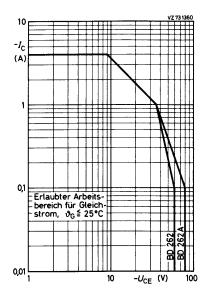
Drehmoment-Bereich bei Befestigung (bei Verwendung von 56 302 und 56 303):

$$M_{D} = 0.5...0.6 \text{ Nm} \\ (5...6 \text{ kp cm})$$

Kurzdaten:		Ē	BD 262 B	D 262	<u>A</u>
Kollektor-Sperrspannung	-U _{CB} C	= max.	60	80	v
Kollektor-Emitter-Sperrspannung	-UCE C		60	80	v
Kollektorstrom, Scheitelwert	-I _{C M}	= max.	6		A
Gesamtverlustleistung bei $\vartheta_{G} \stackrel{\leq}{=} 25^{\circ} C$	Ptot	= max.	36		W
bei $\vartheta_{G} = 100^{\circ} C$	P_{tot}	= max.	14		W
Sperrschichttemperatur	$\mathfrak{d}_{\mathrm{J}}$	= max.	150		°C
Gleichstromverstärkung					
bei $-U_{CE} = 3 V$, $-I_{C} = 1.5 A$	В	≟	750		
Transit-Frequenz			0.5		VIII -
bei $-U_{CE} = 3 V$, $-I_{C} = 3 A$	f T	=	2,5		MH 2

BD 262 BD 262 A


Absolute Grenzwerte: (gültig bis 9 _{J max})
Kollektor-Sperrspannung bei $I_E = 0$:	
Kollektor-Emitter-Sperrspannung bei I _B =	0 :
Emitter-Sperrspannung bei I _C = 0:	
Kollektorstrom, Mittelwert:	
Kollektorstrom, Scheitelwert:	
Gesamtverlustleistung bei $\vartheta_G \stackrel{\leq}{=} 25^{\circ}C$:	
Sperrschichttemperatur:	
Lagerungstemperatur:	

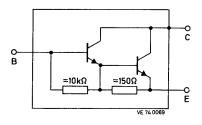

			BD 262	BD	262	<u>A</u>
-U _{СВ 0}	=	max	. 60		80	v
-U _{CE} 0		max	. 60		80	v
-U _{EB 0}	=	max.	•	5		V
-I _{C AV}	=	max	•	4		A
-I _{C M}	=	max.	•	6		A
$\mathbf{P_{tot}}$	=	max	. 3	36		W
${}^{\vartheta}J$	=	max.	. 15	50		$^{\rm o}$ c
θ_{S}	=	min.	-5	55		$^{\rm o}$ C
$\vartheta_{ m S}$	=	max.	. 15	0		$^{\rm o}$ C

Wärmewiderstand:

zwischen Sperrschicht und Montagefläche:

BD 262 BD 262 A

 $\underline{\text{Kennwerte}}$: bei ϑ_{J} = 25 0 C, sofern nicht anders angegeben

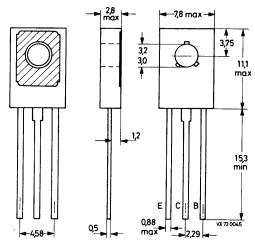

•			BD 262	BD 262	<u>A</u>
Kollektor-Emitter-Durchbruchspannung bei -I _C = 100 mA, I _B = 0:	-U(BR) CE (<u></u>	60	80	v
Kollektor-Reststrom bei $-U_{CB}$ = 60 V, I_{E} = 0: bei $-U_{CB}$ = 60 V, I_{E} = 0, ϑ_{G} = 100° C:	-I _{CB} 0	\ <u>\</u>	200 2		μA mA
bei $-U_{CB} = 80 \text{ V}, I_{E} = 0$: bei $-U_{CB} = 80 \text{ V}, I_{E} = 0, \vartheta_{G} = 100^{\circ}\text{C}$:	-I _{CB 0}	< = < =		200 2	μA mA
Kollektor-Emitter-Reststrom bei $-U_{CE} = 30$ V, $I_{B} = 0$: bei $-U_{CE} = 40$ V, $I_{B} = 0$:	-I _{CE 0}	<u>≤</u> <u>≤</u>	500	500	μ Α μ Α
Emitter-Reststrom bei $-U_{EB} = 5 \text{ V}, I_{C} = 0$:	-I _{EB 0}	≦	5		mA
Kollektor-Emitter-Restspannung bei ^{-1}C = 1,5 A, ^{-1}B = 30 mA:	-U _{CE sat}	≦	2,5		v
Basisspannung bei $-U_{CE} = 3$ V, $-I_{C} = 1,5$ A:	-U _{BE}	≦	2,5		v
Gleichstromverstärkung bei $-U_{CE} = 3 V$, $-I_{C} = 0,5 A$:	В	=	1000		
bei $-U_{CE} = 3 \text{ V}, -I_{C} = 1,5 \text{ A}$: bei $-U_{CE} = 3 \text{ V}, -I_{C} = 4,0 \text{ A}$:	В	<i>=</i>	750 500		
Transit-Frequenz bei -U _{CE} = 3 V, -I _C = 3 A:	\mathbf{f}_{T}	=	2,5		MHz

DATEN VORLÄUFIGER MUSTER ÄNDERUNGEN VORBEHALTEN

BD 263 BD 263 A

SILIZIUM - NPN - EPIBASIS -DARLINGTON - LEISTUNGSTRANSISTOREN

Mechanische Daten:


Gehäuse: Kunststoff, SOT-32 (JEDEC T0-126)

Der Kollektor ist mit der metallischen Montagefläche leitend verbunden.

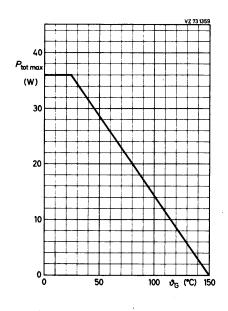
Für isolierten Einbau sind Glimmerscheibe 56 302 und Tederscheibe 56 303 lieferbar.

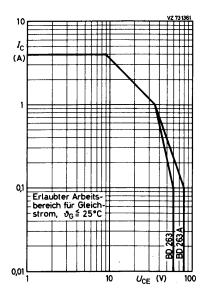
Drehmoment-Bereich bei Befestigung (bei Verwendung von 56 302 und 56 303):

$$M_{D} = 0,5...0,6 \text{ Nm}$$
 $(5...6 \text{ kp cm})$

Kurzdaten:		Ī	BD 263 BI	0 263 A
Kollektor-Sperrspannung	U _{CB}	0 = max.	80	100 V
Kollektor-Emitter-Sperrspannung	UCE		60	80 V
Kollektorstrom, Scheitelwert	I _{C M}		6	A
Gesamtverlustleistung bei $\vartheta_{G} \stackrel{\leq}{=} 25^{\circ} C$	Ptot		36	W
bei $\vartheta_{G} = 100^{\circ} C$	Ptot		14	W
Sperrschichttemperatur	$\mathfrak{d}_{\mathbf{J}}$	= max.	150	°c
Gleichstromverstärkung				
bei $U_{CE} = 3 \text{ V}, I_{C} = 1,5 \text{ A}$	В	≟	750	
Transit-Frequenz				
bei $U_{CE} = 3$ V, $I_{C} = 3$ A	$\mathbf{f}_{\mathbf{T}}$	=	2,5	MHz

BD 263 BD 263 A


Absolute Grenzwerte: (gultig bis $\vartheta_{J max}$)
Kollektor-Sperrspannung bei $I_E = 0$:
Kollektor-Emitter-Sperrspannung bei I _B = 0:
Emitter-Sperrspannung bei I _C = 0:
Kollektorstrom, Mittelwert:
Kollektorstrom, Scheitelwert:
Gesamtverlustleistung bei $\vartheta_G \stackrel{\leq}{=} 25^{\circ}C$:
Sperrschichttemperatur:
Lagerungstemperatur:


		BD 2	<u>:63</u>	BD 263	A
U _{CB} 0	= ma	x. 80)	100	v
		x. 60)	80	v
UEB 0	= ma	х.	5		v
I _{C AV}	= ma	х.	4		A
$^{\mathbf{I}}$ C M	= ma	х.	6		A
$\mathbf{P_{tot}}$	= ma	х.	36		W
${}^{\vartheta}_{\mathbf{J}}$	= ma	х.	150		°c
⁸ s	= mi	n.	-55		°c
⁹ J ⁹ S ⁹ S	= ma:	х.	150		°c

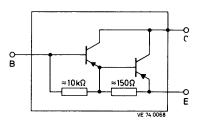
Wärmewiderstand:

zwischen Sperrschicht und Montagefläche:

$R_{ ext{th}}$	G	≦	3,5	grd/W

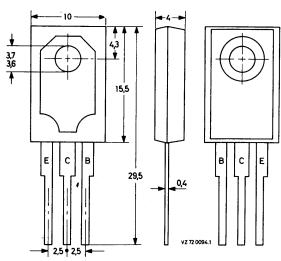
BD 263 BD 263 A

 $\underline{\text{Kennwerte}}$: bei ϑ_{J} = 25 $^{\circ}$ C, sofern nicht anders angegeben


			BD 263	BD 263	<u>A</u>
Kollektor-Emitter-Durchbruchspannung bei $I_C = 100$ mA, $I_B = 0$:	U(BR) CE O	≥	60	80	v
Kollektor-Reststrom		,			
bei $U_{CB} = 60 \text{ V}, I_{E} = 0$:	I _{CB 0}	<u>≤</u>	200		$\mu \mathbf{A}$
bei $U_{CB} = 60 \text{ V}, I_{E} = 0, \vartheta_{G} = 100^{\circ}\text{C}$:	ICB 0	=	2		mA
bei $U_{CB} = 80 \text{ V}$, $I_{E} = 0$:	I _{CB 0}	≦ ≤		200	$\mu \mathbf{A}$
bei $U_{CB} = 80 \text{ V}$, $I_{E} = 0$, $\theta_{G} = 100^{\circ}\text{C}$:	I _{CB 0}	≦		2	mA
Kollektor-Emitter-Reststrom		,			
bei $U_{CE} = 30 \text{ V}, I_{B} = 0$:	ICE O	=	500		$\mu \mathbf{A}$
bei $U_{CE} = 40 \text{ V}, I_{B} = 0$:	I _{CE 0}	≦		500	$\mu \mathbf{A}$
Emitter-Reststrom		/			
bei $U_{EB} = 5 \text{ V}, I_{C} = 0$:	I _{EB} 0	<u></u>	5		mA
Kollektor-Emitter-Restspannung	**	≤	0.5		
bei $I_C = 1.5 A$, $I_B = 30 mA$:	$^{ m U}_{ m CE}$ sat	=	2,5		V
Basisspannung		≦			
bei $U_{CE} = 3$ V, $I_{C} = 1,5$ A:	$^{\mathrm{U}}\mathbf{_{BE}}$	=	2,5		V
Gleichstromverstärkung					
bei $U_{CE} = 3 \text{ V}, I_{C} = 0,5 \text{ A}$:	В	=	1000		
bei $U_{CE} = 3 \text{ V}, I_{C} = 1,5 \text{ A}$:	В	<u>></u>	750		
bei $U_{CE} = 3 \text{ V}, I_{C} = 4,0 \text{ A}$:	В	=	500		
Transit-Frequenz					
bei $U_{CE} = 3 \text{ V}, I_{C} = 3 \text{ A}$:	$\mathbf{f}_{\mathbf{T}}$	=	2,5		MHz

DATEN FÜR ENTWICKLUNGSMUSTER ÄNDERUNGEN VORBEHALTEN

BD 264 BD 264 A


SILIZIUM - PNP - EPIBASIS DARLINGTON - LEISTUNGSTRANSISTOREN

Mechanische Daten:

Gehäuse: Kunststoff, TOP-66

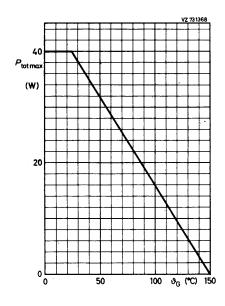
Der Kollektor ist mit der metallischen Montagefläche leitend verbunden.

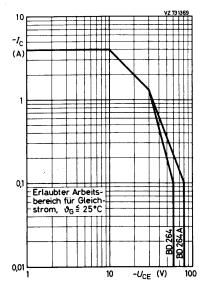
Kurzdaten:			<u>B</u> 1	D 264	BD	264 A	
Kollektor-Sperrspannung	-U _{CB}) =	max.	60		80	v
Kollektor-Emitter-Sperrspannung	-U _{CE}) =	max.	60		80	v
Kollektorstrom, Scheitelwert	-I _{C M}	=	max.		6		A
Gesamtverlustleistung bei $\vartheta_{G} \stackrel{\leq}{=} 25^{\circ} C$	Ptot	=	max.	4	0		W
bei $\vartheta_{G} = 100^{\circ} C$	P_{tot}	- =	max.	1	6		W
Sperrschichttemperatur			max.	15	0		°c
Gleichstromverstärkung							
bei $-U_{CE} = 3 \text{ V}, -I_{C} = 2 \text{ A}$	В	≟		100	0		
Transit-Frequenz							
bei $-U_{CE} = 3 V$, $-I_{C} = 2 A$	$\mathbf{f}_{\mathbf{T}}$	=		2,	5		MHz

BD 264 BD 264 A

<u>Absolute Grenzwerte</u> : (gültig bis $\vartheta_{J max}$)	
Kollektor-Sperrspannung bei $I_E = 0$:	$-U_{CB\ 0} = m$
Kollektor-Emitter-Sperrspannung bei $I_B = 0$:	$-U_{CE \ 0} = m$
Emitter-Sperrspannung bei I _C = 0:	$-U_{EB\ 0} = m$
Kollektorstrom, Mittelwert:	$-I_{C AV} = m$
Kollektorstrom, Scheitelwert:	$-I_{CM} = m$
Gesamtverlustleistung bei $\vartheta_{G} \stackrel{\leq}{=} 25^{\circ}C$:	$P_{tot} = m$
Sperrschichttemperatur:	ϑ _{,J} = m
Lagerungstemperatur:	% = m

Wärmewiderstand:

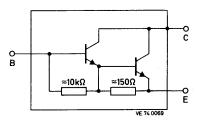

zwischen Sperrschicht und Montagefläche:


-U _{CB 0}	=	max.	60		80	V
-U _{CE 0}	=	max.	60		80	V
-U _{EB 0}	=	max.		5		V
-I _{C AV}	=	max.		4		A
-1 _{C M}	=	max.		6		A
P_{tot}	=	max.		40		W
$\vartheta_{ m J}$	=	max.		150		o C
⁹ S	=	min.		-55		o C
9 _S	=	max.		150		°C
-						

BD 264 BD 264 A

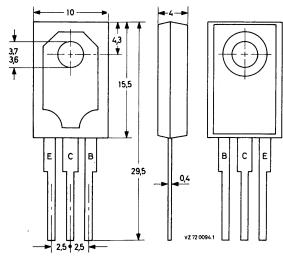
3,12 grd/W

BD 264 BD 264 A


<u>Kennwerte</u> : bei $\vartheta_G = 25^{\circ}$ C, sofern nicht anders angegeben							
			BD 264	BD 264	A		
Kollektor-Emitter-Durchbruchspannung		5					
bei $-I_C = 100 \text{ mA}, I_{B^*} = 0$:	-U(BR) CE 0	ź	60	80	V		
Kollektor-Reststrom		,					
bei $-U_{CB} = 60 \text{ V}, I_{E} = 0$:	-I _{CB 0}	≦	200		$\mu \mathbf{A}$		
bei $-U_{CB} = 60 \text{ V}, I_{E} = 0, \vartheta_{G} = 100^{\circ}\text{C}$:	-1 _{CB 0}	≦	2		mA		
bei $-U_{CB} = 80 \text{ V}, I_{E} = 0$:		≦		200	$\mu \mathbf{A}$		
	-I _{CB 0}	≦			μя		
bei $-U_{CB} = 80 \text{ V}, I_{E} = 0, \vartheta_{G} = 100^{\circ}\text{C}$:	-I _{CB 0}	=		2	mA		
Kollektor-Emitter-Reststrom		,					
bei $-U_{CE} = 30 \text{ V}, I_{B} = 0$:	-I _{CE 0}	≦	500		$\mu \mathbf{A}$		
bei $-U_{CE} = 40 \text{ V}, I_{B} = 0$:		≦		500			
CE B	-I _{CE 0}	-		000	μ A		
Emitter-Reststrom		,					
bei $-U_{EB} = 5 \text{ V}, I_C = 0$:	-I _{EB 0}	≦		5	mA.		
Kollektor-Emitter-Restspannung							
bei $-I_C = 2 A$, $-I_B = 8 mA$:	-U	≦	2,	5	v		
	$^{-\mathrm{U}}$ CE sat		-,	-	•		
Basisspannung		,					
bei $-U_{CE} = 3 V, -I_{C} = 2 A$:	$^{-\mathrm{U}}_{\mathbf{BE}}$	≦	2,	5	V		
Gleichstromverstärkung							
bei $-U_{CE} = 3 \text{ V}, -I_{C} = 500 \text{ mA}$:	В	=	100	0			
	_	_ <u>≥</u>		-			
bei $-U_{CE} = 3 \text{ V}, -I_{C} = 2 \text{ A}$:	В	=	100	U			
bei $-U_{CE} = 3 \text{ V}, -I_{C} = 4 \text{ A}$:	В	=	50	0			
Transit-Frequenz							
bei $-U_{CE} = 3 \text{ V}, -I_{C} = 2 \text{ A}$:	f _T	=	2,	5	MHz		
CE C	- T		٠,	-	···		

DATEN FÜR ENTWICKLUNGSMUSTER ÄNDERUNGEN VORBEHALTEN

BD 265 BD 265 A


SILIZIUM - NPN - EPIBASIS -DARLINGTON - LEISTUNGSTRANSISTOREN

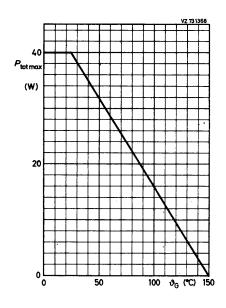
Mechanische Daten:

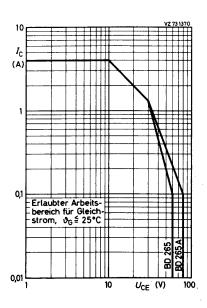
Gehäuse: Kunststoff, TOP-66

Der Kollektor ist mit der metallischen Montagefläche leitend verbunden.

Kurzdaten:			<u> </u>	D 265	BD 265	<u>A</u>
Kollektor-Sperrspannung	U _{CB}	0 =	max.	80	100	v
Kollektor-Emitter-Sperrspannung	UCE		max.	60	80	v
Kollektorstrom, Scheitelwert	I _{C M}		max.		6	A
Gesamtverlustleistung bei $\vartheta_{G} \stackrel{\leq}{=} 25^{\circ} C$	Ptot	=	max.	4	10	W
bei $\vartheta_{G} = 100^{\circ} C$	Ptot		max.	_ 1	16	W
Sperrschichttemperatur	$\theta_{ m J}$		max.	15	50	°c
Gleichstromverstärkung bei $U_{CE}=3$ V, $I_{C}=2$ A	В	<u>></u>		100	00	
Fransit-Frequenz bei U _{CE} = 3 V, I _C = 2 A	f T	=		2,	, 5	мн

BD 265 BD 265 A

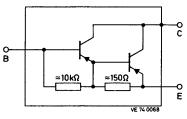

Absolute Grenzwerte: (gültig bis $\vartheta_{ ext{J max}}$)]
Kollektor-Sperrspannung bei $I_E = 0$:	UCB 0 = max
Kollektor-Emitter-Sperrspannung bei I _B = 0:	U _{CE 0} = max.
Emitter-Sperrspannung bei I _C = 0:	$U_{EB \ 0} = max.$
Kollektorstrom, Mittelwert:	$I_{C \text{ AV}} = \max$
Kollektorstrom, Scheitelwert:	$I_{CM} = \max$
Gesamtverlustleistung bei $\vartheta_G \stackrel{\leq}{=} 25^{\circ}C$:	P _{tot} = max
Sperrschichttemperatur:	$\theta_{J} = \max$
Lagerungstemperatur:	θ _S = min.
	A - max.


		<u>B</u> 1	265	BI	265	A
U _{CB} 0	=	max.	80		100	· v
UCE 0	=	max.	60		80	V
U _{EB} 0	=	max.		5		V
I _{C AV}	=	max.		4		A
$^{\mathrm{I}}$ C M	=	max.		6		A
P_{tot}		max.		40		W
₽. 1	=	max.	1	50		o C
9 _S	=	min.	-	55		°C
ð _s	=	max.	1	50		°c

Wärmewiderstand:

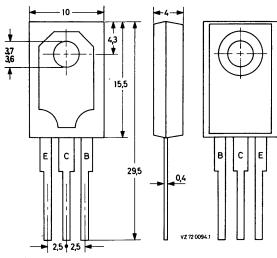
zwischen Sperrschicht und Montagefläche:

BD 265 BD 265 A


<u>Kennwerte</u> : bei $\mathfrak{g} = 25$ C, sofern nicht	anders	angegeb	en		
			BD 265	BD 265	A
Kollektor-Emitter-Durchbruchspannung					
bei $I_C = 100 \text{ mA}, I_B = 0$:	U(BR)	$_{\text{CE }0} \stackrel{\geq}{=}$	60	80	v
Kollektor-Reststrom		,			
bei $U_{CB} = 60 \text{ V}$, $I_{E} = 0$:	I _{CB 0}	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	200		$\mu \mathbf{A}$
bei $U_{CB} = 60 \text{ V}, I_{E} = 0, \vartheta_{G} = 100^{\circ}\text{C}$:	I _{CB 0}	<u> </u>	2		mA
bei $U_{CB} = 80 \text{ V}, I_{E} = 0$:	ICB 0	<u> </u>		200	$\mu \mathbf{A}$
bei $U_{CB} = 80 \text{ V}$, $I_{E} = 0$, $\theta_{G} = 100^{\circ}\text{C}$:	ICB 0	≦		2	mA
Kollektor-Emitter-Reststrom		,			
bei $U_{CE} = 30 \text{ V}, I_{B} = 0$:	ICE 0	<u>≦</u> <u>≤</u>	500		$\mu \mathbf{A}$
bei $U_{CE} = 40 \text{ V}, I_{B} = 0$:	ICE 0	≦		500	$\mu \mathbf{A}$
Emitter-Reststrom		,			
bei $U_{EB} = 5 \text{ V}, I_{C} = 0$:	IEB 0	≦		5	mA
Kollektor-Emitter-Restspannung		,			
bei $I_C = 2 A$, $I_B = 8 mA$:	U _{CE} sa	.t ≦	2	2,5	v
Basisspannung					
bei $U_{CE} = 3 V$, $I_{C} = 2 A$:	$\mathbf{U}_{\mathbf{BE}}$	≦	2	2,5	v
Gleichstromverstärkung					
bei $U_{CE} = 3 \text{ V}$, $I_{C} = 500 \text{ mA}$:	В	=	10	000	
bei $U_{CE} = 3 \text{ V}, I_{C} = 2 \text{ A}$:	В	≥	10	000	
bei $U_{CE} = 3 \text{ V}, I_{C} = 4 \text{ A}$:	В	=	5	500	
Transit-Frequenz					
bei $U_{CE} = 3 V$, $I_{C} = 2 A$:	fT	=	2	2,5	MHz

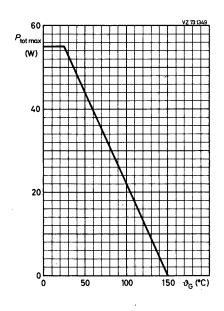
DATEN FÜR ENTWICKLUNGSMUSTER BD 266

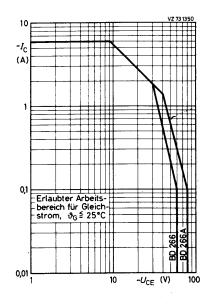
BD 266 BD 266 A


SILIZIUM - PNP - EPIBASIS DARLINGTON - LEISTUNGSTRANSISTOREN

Mechanische Daten:

Gehäuse: Kunststoff TOP-66


Der Kollektor ist mit der metallischen Montagefläche leitend verbunden.



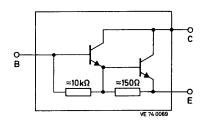
Kurzdaten:				BD 266	BD	266	<u>A</u>
Kollektor-Sperrspannung	-U _{CB 0}	=	max.	60		80	v
Kollektor-Emitter-Sperrspannung	-U _{CE} o		max.	60		80	v
Kollektorstrom, Scheitelwert	-I _{C M}	=	max.		8		A
Gesamtverlustleistung bei $\vartheta_{G} \stackrel{\leq}{=} 25^{\circ} C$	P_{tot}	=	max.		55		W
bei $\vartheta_{G} = 100^{\circ} C$	Ptot	=	max.		22		W
Sperrschichttemperatur	\mathfrak{d}^{1}	=	max.		150		°C
Gleichstromverstärkung bei $-U_{CE} = 3$ V, $-I_{C} = 3$ A	В	<u> </u>			750		
Transit-Frequenz	-						
bei $-U_{CE} = 3 V$, $-I_{C} = 3 A$	$\mathbf{f}_{\mathbf{T}}$	=			2,5		MH2

BD 266 BD 266 A

$\underline{\text{Absolute Grenzwerte}}$: (gültig bis $\vartheta_{\text{J max}}$)		<u>BI</u>	D 266 BD	266	A
Kollektor-Sperrspannung bei $I_E = 0$:	-U _{CB 0} =	max.	60	80	V
Kollektor-Emitter-Sperrspannung bei $I_{R} = 0$:	-U _{CE 0} =			80	V
Emitter-Sperrspannung bei $I_C = 0$:	-U _{EB 0} =		5		v
Kollektorstrom, Mittelwert:	-I _{C AV} =	max.	6		A
Kollektorstrom, Scheitelwert:	-I _{C M} =		8		A
Gesamtverlustleistung bei $\vartheta_G \stackrel{\leq}{=} 25^{\circ}C$:		max.	55		W
Sperrschichttemperatur:		max.	150		° C
Lagerungstemperatur:	-	min.	-55		o C
	θ _S =	max.	150		°c
Wärmewiderstand:					
zwischen Sperrschicht und Montagefläche:	R _{th G}		2,3	g	rd/W

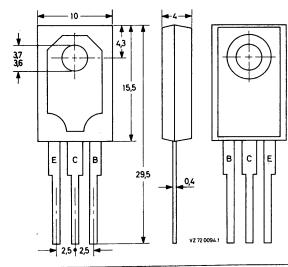
BD 266 BD 266 A

 $\underline{\text{Kennwerte}}$: bei ϑ_J = 25 0 C, sofern nicht anders angegeben.


Vallaktan Priittan Durahlan l			BD 266	BD 266	<u>A</u>
Kollektor-Emitter-Durchbruchspannung bei -I _C = 100 mA, I _B = 0:	-U(BR) CE	0 ≧	60	80	v
Kollektor-Reststrom		,			
bei $-U_{CB} = 60 \text{ V}, I_{E} = 0$:	-I _{CB 0}	<u>≤</u> <u>≤</u>	200		$\mu \mathbf{A}$
bei $-U_{CB} = 60 \text{ V}, I_{E} = 0, \vartheta_{C} = 100^{\circ}\text{C}$:	-I _{CB} 0		2		mA
bei $-U_{CB} = 80 \text{ V}, I_{E} = 0$:	-I _{CB} 0	<u>≤</u> ≤		200	$\mu \mathbf{A}$
bei $-U_{CB} = 80 \text{ V}, I_{E} = 0, \vartheta_{G} = 100^{\circ}\text{C}$:	-I _{CB} 0	<u>≤</u>		2	mA
Kollektor-Emitter-Reststrom	CB U				
bei $-U_{CE} = 30 \text{ V}, I_{B} = 0$:	-I _{CE 0}	≦	500		$\mu \mathbf{A}$
bei $-U_{CE} = 40 \text{ V}, I_{B} = 0$:	-I _{CE 0}	≦		500	$\mu \mathbf{A}$
Emitter-Reststrom	02 0	,			
bei $-U_{EB} = 5 \text{ V}, I_{C} = 0$:	-I _{EB 0}	≦	5		mA
Kollektor-Emitter-Restspannung		≦			
bei $-I_C = 3 A$, $-I_B = 12 mA$:	$^{-\mathrm{U}}$ CE sat	=	2,0		V
Basisspannung		,			
bei $-U_{CE} = 3 \text{ V}, -I_{C} = 3 \text{ A}$:	$-\mathrm{U}_{\mathbf{BE}}$	≦	2,5		V
Gleichstromverstärkung					
bei $-U_{CE} = 3 \text{ V}, -I_{C} = 500 \text{ mA}$:	В	=	1500		
bei $-U_{CE} = 3 \text{ V}, -I_{C} = 3 \text{ A}$:	В	≧	750		
bei $-U_{CE} = 3 \text{ V}, -I_{C} = 6 \text{ A}$:	В	=	750		
Transit-Frequenz					
bei $-U_{CE} = 3 V$, $-I_{C} = 3 A$:	$\mathbf{f}_{\mathbf{T}}$,=	2,5		MHz

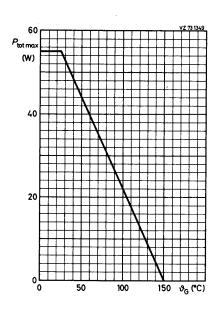
DATEN FÜR ENTWICKLUNGSMUSTER ÄNDERUNGEN VORBEHALTEN

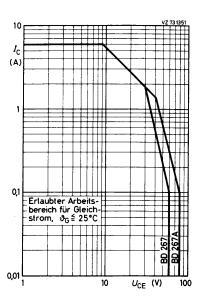
BD 267 BD 267 A


SILIZIUM - NPN - EPIBASIS -DARLINGTON - LEISTUNGSTRANSISTOREN

Mechanische Daten:

Gehäuse: Kunststoff TOP-66


Der Kollektor ist mit der metallischen Montagefläche leitend verbunden.


Kurzdaten:		BD 267	BD 267 A
Kollektor-Sperrspannung	U _{CB 0} = ma	ax. 80	100 V
Kollektor-Emitter-Sperrspannung	$U_{CE \ 0} = ma$	ax. 60	80 V
Kollektorstrom, Scheitelwert	I _{C M} = ma	ax. 8	B A
Gesamtverlustleistung bei $\vartheta_{G} \stackrel{\leq}{=} 25^{\circ} C$	P _{tot} = ma	ax. 55	S W
bei $\vartheta_{G} = 100^{\circ}C$	P _{tot} = ma	ax. 22	
Sperrschichttemperatur	$\vartheta_{J} = m$	ax. 150	°c
Gleichstromverstärkung	>		
bei $U_{CE} = 3 \text{ V}, I_{C} = 3 \text{ A}$	B =	750)
Transit-Frequenz bei U _{CE} = 3 V, I _C = 3 A	f _T =	2,	5 MHz

BD 267 BD 267 A

Absolute Grenzwerte: (gültig bis $\vartheta_{J max}$)	<u>.</u>	D 267 BI	D 267 A
Kollektor-Sperrspannung bei $I_E = 0$:	UCB 0 = max.	80	100 V
Kollektor-Emitter-Sperrspannung bei $I_{R} = 0$:	$U_{CE \ 0} = max.$		80 V
Emitter-Sperrspannung bei I _C = 0:	$U_{EB \ 0} = max.$		v
Kollektorstrom, Mittelwert:	$I_{C \text{ AV}} = \text{max.}$		A
Kollektorstrom, Scheitelwert:	$I_{CM} = max.$	8	A
Gesamtverlustleistung bei $\vartheta_{G} \stackrel{\leq}{=} 25^{\circ}C$:	$P_{tot} = max.$	55	W
Sperrschichttemperatur:	$\vartheta_{,I} = \max.$	150	°C
Lagerungstemperatur:	$\vartheta_{S} = \min.$	-55	°c
	$\vartheta_{S} = \max.$	150	°c
Wärmewiderstand:			

zwischen Sperrschicht und Montagefläche:

 $R_{th G} \stackrel{\leq}{=}$

2,3

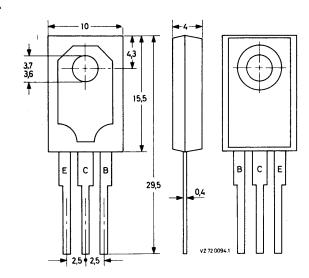
grd/W

BD 267 BD 267 A

Kennwerte:	bei 8₋	$= 25^{\circ}$ C.	sofern	nicht	anders	angegehen
ILCIAIN CI CC .	JCZ UT	,	SOLCIN	miche	anuers	angegeben

Kollektor-Emitter-Durchbruchspannung			BD 267	BD 267	<u>A</u>
bei $I_C = 100$ mA, $I_B = 0$:	U(BR) CE	o [≥]	60	80	v
Kollektor-Reststrom		,			
bei $U_{CB} = 60 \text{ V}$, $I_{E} = 0$:	I _{CB 0}	≦	200		$\mu \mathbf{A}$
bei $U_{CR} = 60 \text{ V}, I_{E} = 0, \vartheta_{G} = 100^{\circ}\text{C}$:	I _{CB} 0	<u>≤</u> <u>≤</u>	2		mA
bei $U_{CB} = 80 \text{ V}, I_{E} = 0$:	I _{CB} 0	≦		200	$\mu \mathbf{A}$
bei $U_{CB}^{CB} = 80 \text{ V}, I_{E}^{E} = 0, \vartheta_{G}^{E} = 100^{\circ} \text{C}$:	I _{CB 0}	≦		2	mA
Kollektor-Emitter-Reststrom		,			
bei $U_{CE} = 30 \text{ V}$, $I_{B} = 0$:	I _{CE 0}	≦	500		$\mu \mathbf{A}$
bei $U_{CE} = 40 \text{ V}, I_{B} = 0$:	ICE 0	<u> </u>		500	$\mu \mathbf{A}$
Emitter-Reststrom		(
bei $U_{EB} = 5 \text{ V}, I_C = 0$:	I _{EB} 0	≦	5		mA
Kollektor-Emitter-Restspannung		_			
bei $I_C = 3 A$, $I_B = 12 mA$:	$^{\mathrm{U}}$ CE sat	≦	2,0		V
Basisspannung		(
bei $U_{CE} = 3 V$, $I_{C} = 3 A$:	$^{ m U}_{ m BE}$	≦	2,5		V
Gleichstromverstärkung					
bei $U_{CE} = 3 \text{ V}, I_{C} = 500 \text{ mA}$:	В	=	1500		
bei $U_{CE} = 3 V$, $I_{C} = 3 A$:	В	≧	750		
bei $U_{CE} = 3 \text{ V}, I_{C} = 6 \text{ A}$:	В	=	750		
Transit-Frequenz					
bei $U_{CE} = 3 V$, $I_{C} = 3 A$:	$\mathbf{f}_{\mathbf{T}}$	=	2,5		MHz

DATEN FÜR ENTWICKLUNGSMUSTER ÄNDERUNGEN VORBEHALTEN


BD 271 BD 273 BD 275

SILIZIUM - NPN - EPIBASIS - LEISTUNGSTRANSISTOREN

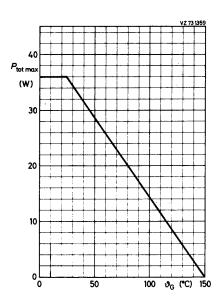
Mechanische Daten:

Gehäuse: Kunststoff TOP-66

Der Kollektor ist mit der metallischen Montagefläche leitend verbunden.

Kurzdaten:		BD 271	BD 273	BD 275
Kollektor-Sperrspannung	U _{CB} o	= max. 55	80	100 V
Kollektor-Emitter-Sperrspannung		= max. 45	60	80 V
Kollektorstrom, Scheitelwert	I _{C M} =	= max.	8	A
Gesamtverlustleistung bei $\vartheta_G \stackrel{\leq}{=} 25^{\circ}C$		= max.	36	W
bei $\vartheta_{G} = 100^{\circ} C$	P _{tot} :	= max.	14	W
Sperrschichttemperatur	ծ յ ։	= max.	150	°c
Gleichstromverstärkung		\		
bei $U_{CE} = 4 \text{ V}, I_{C} = 0,5 \text{ A}$		≟ `	40	
bei $U_{CE} = 4 \text{ V}, I_{C} = 2,0 \text{ A}$	В	<u> </u>	20	
Transit-Frequenz bei U _{CE} = 10 V, I _C = 250 mA	f _T	<u> </u>	2	MHz

BD 271 BD 273 BD 275


Absolute Grenzwerte: (gültig bis $\vartheta_{J max}$)	<u>]</u>	BD 271 BD 273	BD 275
Kollektor-Sperrspannung bei $I_{E} = 0$:	U _{CB 0} = max	. 55 80	100 V
Kollektor-Emitter-Sperrspannung bei $I_{R} = 0$:	$U_{CE} = max$		80 V
Emitter-Sperrspannung bei I _C = 0:	$U_{EB \ 0} = max$		7 V
Kollektorstrom, Mittelwert:	I _{C AV} = max	. 4	A
Kollektorstrom, Scheitelwert:	I _{C M} = max.		A
Gesamtverlustleistung bei $\theta_{G} \stackrel{\leq}{=} 25^{\circ}C$:	P _{tot} = max	36	W
Sperrschichttemperatur:	θ, = max.	150	°c
Lagerungstemperatur:	ϑ _S = min.	-65	°c
	$\vartheta_{S} = \max$	150	°c
Wärmewiderstand:			

zwischen Sperrschicht und Montagefläche:

> °c °C

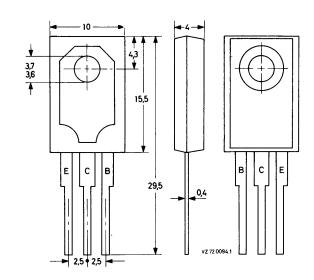
grd/W

3,5

 $R_{th G} \stackrel{\leq}{=}$

<u>Kennwerte</u> : bei $\vartheta_{G} = 25^{\circ}C$		BD 2	71 BD 273 B	D 275
Kollektor-Emitter-Durchbruchspannung bei $I_C = 100$ mA, $I_R = 0$:	U(BR) CE 0	<u>≥</u> 45	60	80 V
Kollektor-Reststrom bei $U_{CB} = 40 \text{ V}, I_{E} = 0$:	ICB 0	≦	100	μΑ
Emitter-Reststrom bei $U_{EB} = 5 \text{ V}, I_{C} = 0$:	IEB 0	≦	1	mA
Kollektor-Emitter-Restspannung bei $I_C = 2 A$, $I_B = 200 mA$:	UCE sat	=	0,6 (= 1,0)	v
Gleichstromverstärkung bei $U_{CE} = 4$ V, $I_{C} = 0,5$ A; bei $U_{CE} = 4$ V, $I_{C} = 2,0$ A;	B B	<u>></u> <u>></u>	40 20	
Transit-Frequenz bei $U_{CE} = 10 \text{ V}, I_{C} = 250 \text{ mA}$:	f _T	<u>></u>	2	MHz

DATEN FÜR ENTWICKLUNGSMUSTER ANDERUNGEN VORBEHALTEN


BD 272 BD 274 BD 276

SILIZIUM - PNP - EPIBASIS - LEISTUNGSTRANSISTOREN

Mechanische Daten:

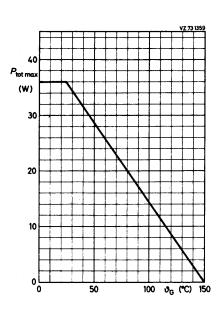
Gehäuse: Kunststoff TOP-66

Der Kollektor ist mit der metallischen Montagefläche leitend verbunden.

<u>{urzdaten</u> :		BD 272	BD 274	BD 276
Kollektor-Sperrspannung	-Чсв с	= max. 55	80	100 V
Kollektor-Emitter-Sperrspannung	-U _{CE}	$= \max_{1} \underbrace{45}$	60	V
Kollektorstrom, Scheitelwert	-1 _{C M}	= max.	8	I
Gesamtverlustleistung bei $\vartheta_{G} \stackrel{\leq}{=} 25^{\circ} C$	Ptot	= max.	36	7
bei $\vartheta_G = 100^{\circ} C$	Ptot	= max.	14	V
Sperrschichttemperatur	$\vartheta_{ m J}$	= max.	150	•
leichstromverstärkung		>		
bei $-U_{CE} = 4 V$, $-I_{C} = 0.5 A$	В	≟	40	
bei $-U_{CE} = 4 \text{ V}, -I_{C} = 2,0 \text{ A}$	В	≟	20	
Fransit-Frequenz bei $-U_{CE} = 10 \text{ V}, -I_{C} = 250 \text{ mA},$		>	2	MH:

BD 272 BD 274 BD 276

Absolute Grenzwerte: (gültig bis $\vartheta_{J max}$)		BD 272	BD 274	BD 276
Kollektor-Sperrspannung bei $I_{E} = 0$:	$-U_{CB \ 0} = m$	ax. 55	80	100 V
Kollektor-Emitter-Sperrspanning bei $I_R = 0$:	$-U_{CE\ 0} = m$	ax. 45	60	80 V
Emitter-Sperrspanning bei I _C = 0:	$-U_{EB \ 0} = m$		7	7_V
Kollektorstrom, Mittelwert:	$-I_{C \ AV} = m$	ax.	4	A
Kollektorstrom, Scheitelwert:	-I _{C M} = m		8	A
Gesamtverlustleistung bei $\vartheta_{G} \stackrel{\leq}{=} 25^{\circ}C$:	$P_{tot} = m$	ax.	36	W
Sperrschichttemperatur:	ϑ _{,1} = m:	ax.	150	°c
Lagerungstemperatur:	ϑ _S = m	in.	-65	°c
	8 _S = m	ax.	150	°C
Wärmewiderstand:				


 $R_{\mathbf{th} \ G} \stackrel{\leq}{=}$

3,5

grd/W

zwischen Sperrschicht und Montagefläche:

<u>Kennwerte</u> : bei $\vartheta_{G} = 25^{\circ}C$		BD 2	72 BD 274 BD 270	<u>6</u>
Kollektor-Emitter-Durchbruchspannung bei ${}^{-1}C = 100$ mA, ${}^{1}B = 0$:	-U(BR) CE 0	≥ 45	60 80	v
Kollektor-Reststrom bei $-U_{CB} = 40 \text{ V}$, $I_{E} = 0$:	-1 _{CB 0}	≦	100	μΑ
Emitter-Reststrom bei $-U_{EB} = 5 \text{ V}, I_{C} = 0$:	-I _{EB 0}	≦	1	mA
Kollektor-Emitter-Restspannung bei ${}^{-1}C$ = 2 A, ${}^{-1}B$ = 200 mA:	-U _{CE sat}	=	0,6 (= 1,0)	v
Gleichstromverstärkung bei $-U_{CE} = 4$ V, $-I_{C} = 0,5$ A: bei $-U_{CE} = 4$ V, $-I_{C} = 2,0$ A:	В В	<u>}</u> <u>}</u>	40 20	
Transit-Frequenz bei $^{-U}_{CE}$ = 10 V, $^{-I}_{C}$ = 250 mA:	f _T	<u>≥</u>	2	MHz