

SILIZIUM - PNP - HF - TRANSISTOR für HF-Verstärker sowie Misch- und Oszillatorstufen im UKW- und VHF-FS-Bereich

Mechanische Daten:

Gehäuse: Kunststoff, SOT-54 Maßangaben in mm.

Kurzdaten:				
Kollektor-Sperrspannung	-U _{an}	0 = max.	30	v
Kollektor-Emitter-Sperrspannung	-u _{CE}			
Kollektorstrom	-I _C	0 = max.		
Gesamtverlustleistung bei 8 ₁₁ ≤ 45°C	-			
Sperrschichttemperatur	$^{ extbf{P}}_{ extbf{tot}}$	= max.		
Gleichstromverstärkung				
bei $-U_{CB} = 10 \text{ V}$, $I_{E} = 1 \text{ mA}$	В	<u> </u>	25	
ransit-Frequenz				
bei $-U_{CB} = 10 \text{ V}, I_{E} = 1 \text{ mA}$	f _T	=	350	MHz
eistungsverstärkung	•			
bei $-U_{CB} = 10 \text{ V}$, $I_{E} = 3 \text{ mA}$, $f = 200 \text{ MHz}$	V _{pb}	≧	14	đВ
dauschzahl	•	,		
bei $-U_{CB} = 10$ V, $I_{E} = 1$ mA, $f = 200$ MHz	${f F}$	2	6	dΒ

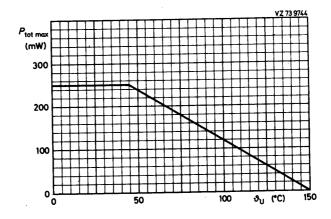
Absolute Grenzwerte: (gültig bis \$ J max)

Kollektor-Sperrspannung bei
$$I_E=0$$
:
Kollektor-Emitter-Sperrspannung bei $I_B=0$:
Emitter-Sperrspannung bei $I_C=0$:

Kollektorstrom:

Gesamtverlustleistung bei $\vartheta_{\overline{U}} \stackrel{\leq}{=} 45^{\circ}C$:

Sperrschichttemperatur:


Lagerungstemperatur:

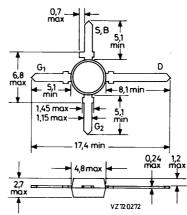
-U _{CB 0}	= max.	30	V
-UCE O	= max.	20	V
∸UEB 0	= max.	4	V
-1 _c	= max.	25	mA
Ptot	= max.	250	шW
$\vartheta_{\mathbf{J}}$	= max.	150	°C
⁹ s	= min.	-55	°c
2	= max.	150	°c
θ_{S}	= max.	100	·

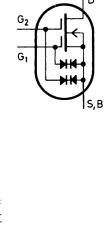
Warmewiderstand:

zwischen Sperrschicht und Umgebung:

$$R_{th\ U} \stackrel{\leq}{=} 420\ K/W$$

<u>Kennwerte</u> : bei $\vartheta_{\overline{U}} = 25^{\circ}C$				
Kollektor-Durchbruchspannung bei I _E = 0, -I _C = 10 μA:	-U(BR) CB	2 ≥	30	ν
Kollektor-Emitter-Durchbruchspannung bei I _B = 0, -I _C = 2 mA:	-U(BR) CE		20	v
Emitter-Durchbruchspannung bei I _C = 0, -I _E = 10 μA:	-U(BR) EB		4	v
Kollektor-Reststrom bei I _E = 0, -U _{CB} = 20 V:	-I _{CB 0}	ŭ <u>≦</u>	50	nA
Basisstrom bei $-U_{CB} = 10 \text{ V}, I_{E} = 1 \text{ mA}$:	-I _B	≦	38	μA
Transit-Frequenz bei $-U_{CB} = 10 \text{ V}$, $I_{E} = 1 \text{ mA}$, $f_{M} = 100 \text{ MHz}$:	f _m	=	350	MHz
Rückwirkungskapazität bei -U _{CB} = 10 V, I _E = 1 mA:	•	_	0.9	
Leistungsverstärkung in Basisschaltung	^C 12e	-	0,9	pF
bei $-U_{CB} = 10 \text{ V}$, $I_{E} = 3 \text{ mA}$, $R_{L} = 920 \Omega$, $R_{g} = 60 \Omega$, $f = 200 \text{ MHz}$:	v _{pb}	= 17,	,5 (≧ 14)	dB
Rauschzahl bei $-U_{CB} = 10 \text{ V}, I_{E} = 1 \text{ mA}$	•			
und $R_g = 50 \Omega$, $f = 200 \text{ MHz}$:	F	=	5 (≦ 6)	dВ




N - KANAL - MOS - FELDEFFEKT - TRANSISTOR - TETRODE Veragmungstyp (depletion), mit integrierten Schutzdioden, für UKW-/VHF-Anwendungen (einschließlich S-Kanäle)

Mechanische Daten:

Gehäuse: Kunststoff, SOT-103

Maßangaben in mm.

l	Kurzdaten:					
I	Drain - Source - Spannung	Uns	= max.	20	v .	
l	Drainstrom, Mittelwert	I _{D AV}	= max.	30	mA	
I	Gesamtverlustleistung bei $\theta_{II} \stackrel{\leq}{=} 75^{\circ} \text{C}$		= max.			
l	Kanaltemperatur	8 K	= max.	150	°C	
	Drain-Source-Kurzschlußstrom bei U_{DS} = 15 V, U_{G2S} = 4 V	I _{DS} s	=	22	O mA	
	Leistungsverstärkung bei $U_{DS} = 15$ V, $U_{G2S} = 4$ V, $I_{D} = 10$ mA					
l	und f = 200 MHz	$\mathbf{v}_{\mathbf{p}}$	=	25	dB	
l	Rauschzahl					
l	bei $U_{DS} = 15 \text{ V}$, $U_{G2S} = 4 \text{ V}$, $I_{D} = 10 \text{ mA}$ und $f = 200 \text{ MHz}$	F	=	1,5	dB	
I	Rückwirkungskapazität bei U_{DS} = 15 V, U_{G2S} = 4 V, I_{D} = 10 mA	C _{12s}	=	25	fF	
1						

Absolute Grenzwerte: (gültig bis 8 max)

Drain - Source - Spannung:

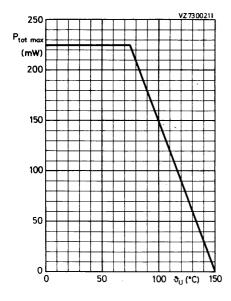
Drainstrom, Mittelwert:

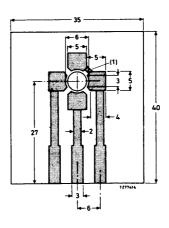
Gate 1 - Strom:

Gate 2 - Strom:

Gesamtverlustleistung bei $\vartheta_{\overline{U}} \stackrel{\leq}{=} 75^{\circ}C$: 1)

Kanaltemperatur:


Lagerungstemperatur:


Wärmewiderstand:

1) zwischen Kanal und Umgebung:

$\mathbf{u}_{\mathbf{DS}}$	= max.	20	V
I _{D AV}	= max.	30	m.A
±I _{G1S}	= max.	10	mA
±1 _{G2S}	= max.	10	mA
Ptot	= max.	225	mW
8 _K	= max.	150	°c
e _S	= min.	-65	°C
₽ _S	= max.	150	°c

 $R_{th\ U} \leq$ 0,335 K/mW

¹⁾ Transistor auf einseitig 35 µm Cu-kaschierter Glasfaser-Epoxid-Leiterplatte von 40 mm x 35 mm, 1,5 mm stark, liegend, vgl. obenstehende Skizze

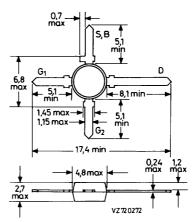
```
Statische Kennwerte: bei \vartheta_{II} = 25^{\circ}C
Gate 1 - Source - Durchbruchspannung
   bei U_{G2S} = U_{DS} = 0, \pm I_{G1S} = 10 mA:
                                                                      U_{(BR) G1S S} = 6...20
Gate 2 - Source - Durchbruchspannung
   bei U_{G1S} = U_{DS} = 0, \pm I_{G2S} = 10 mA:
                                                                      U_{(BR) G2S S} =
                                                                                             6...20
Gate 1 - Reststrom
   bei \pm U_{G1S} = 5 \text{ V}, U_{G2S} = U_{DS} = 0:
                                                                      ±IG1S S
                                                                                                        nA
Gate 2 - Reststrom
   bei \pm U_{G2S} = 5 \text{ V}, U_{G1S} = U_{DS} = 0:
                                                                      ±I<sub>G2S</sub> S
                                                                                                50
                                                                                                        nA
Drain - Source - Kurzschlußstrom
   bei U_{nS} = 15 \text{ V}, U_{G2S} = 4 \text{ V}:
                                                                                             2...20
                                                                      I<sub>DS S</sub>
Gate - Source - Abschnürspannung
   bei U_{DS} = 15 \text{ V}, I_{D} = 20 \mu\text{A}, U_{G2S} = 4 \text{ V}:
                                                                      -U<sub>P G1</sub>
   bei U_{DS} = 15 V, I_{D} = 20 \mu A, U_{G1S} = 0:
Dynamische Kennwerte: bei U_{DS} = 15 \text{ V}, U_{G2S} = 4 \text{ V}, I_{D} = 10 \text{ mA}, \delta_{II} = 25^{\circ}\text{C}
                                                                                      = 17 (\stackrel{>}{=} 15)mS
Vorwärtssteilheit bei f = 1 kHz:
                                                                      y<sub>218</sub>
                                                                                      = 2,5 (\stackrel{\leq}{=} 3,0) pF
Gate 1 - Eingangskapazität bei f = 1 MHz:
                                                                      C<sub>118 g1</sub>
Gate 2 - Eingangskapazität bei f = 1 MHz:
                                                                                       = 1,2 pF
                                                                      C<sub>11s \(\sigma\)2</sub>
                                                                                       = 1,0 (\stackrel{\leq}{=}1,3)pF
Ausgangskapazität bei f = 1 MHz:
                                                                      C 228
                                                                                       = 25 (\stackrel{\leq}{=} 35) fF
Rückwirkungskapazität bei f = 1 MHz:
                                                                      C<sub>128</sub>
Leistungsverstärkung
  bei G_{g} = 2 \text{ mS}, G_{T} = 0.5 \text{ mS}, f = 200 \text{ MHz}:
                                                                                               25
Rauschzahl
  bei G_g = 2 \text{ mS}, f = 200 \text{ MHz}:
                                                                                      \% 1,5 (\leq 2.8)dB
                                                                      F
```

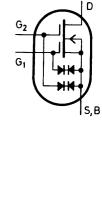
Dieses Datenblatt gibt keine Auskunft über Liefermöglichkeiten.

Die angegebenen Daten dienen allein der Produktbeschreibung und sind nicht als zugesicherte Eigenschaften im Rechtssinne aufzufassen. Etwaige Schadensersatzansprüche gegen uns – gleich aus welchem Rechtsgrund – sind ausgeschlossen, soweit uns nicht Vorsatz oder grobe Fahrlässigkeit trifft. Es wird keine Gewähr übernommen, daß die angegebenen Schaltungen oder Verfahren frei von Schutz-

Es wird keine Gewähr übernommen, daß die angegebenen Schaltungen oder Verfahren frei von Schutzrechten Dritter sind.

Ein Nachdruck – auch auszugsweise – ist nur zulässig mit Zustimmung des Herausgebers und mit genauer Quellenangabe.




N - KANAL - MOS - FELDEFFEKT - TRANSISTOR - TETRODE Verarmungstyp (depletion), mit integrierten Schutzdioden, für UHF - Anwendungen

Mechanische Daten:

Gehäuse: Kunststoff, SOT-103

Maßangaben in mm.

Kurzdaten:			
Drain - Source - Spannung UDS	= max.	20	v
Drainstrom, Mittelwert	= max.	30	mĄ.
Gesamtverlustleistung bei $\vartheta_{\text{U}} \stackrel{\checkmark}{=} 75^{\circ}\text{C}$ Ptot		225	mW
Kanaltemperatur 8K	= max.	150	°C
Drain-Source-Kurzschlußstrom			
bei $U_{DS} = 15 \text{ V}$, $U_{G2S} = 4 \text{ V}$	=	220	mA.
Leistungsverstärkung			
bei $U_{DS} = 15 \text{ V}$, $U_{G2S} = 4 \text{ V}$, $I_{D} = 10 \text{ mA}$			
und f = 200 MHz V	=	25	dB
und $f = 800 \text{ MHz}$ V_p	=	18	dB
Rauschzahl			
bei $U_{DS} = 15 \text{ V}$, $U_{G2S} = 4 \text{ V}$, $I_{D} = 10 \text{ mA}$			
und f = 200 MHz F	=	1,5	dB
und f = 800 MHz F	=	2,8	dB
Rückwirkungskapazität			
bei $U_{DS} = 15$ V, $U_{G2S} = 4$ V, $I_{D} = 10$ mA C_{12s}	=	25	fF

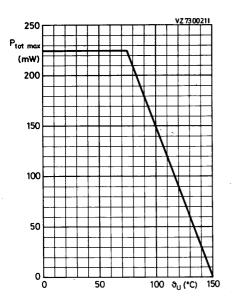
Absolute Grenzwerte: (gültig bis 8 max)

Drain - Source - Spannung:

Drainstrom, Mittelwert:

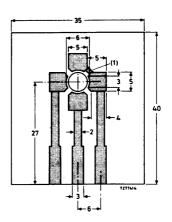
Gate 1 - Strom:

Gate 2 - Strom:


Gesamtverlustleistung bei $\vartheta_{\Pi} \stackrel{\leq}{=} 75^{\circ}C$: 1)

Kanaltemperatur:

Lagerungstemperatur:


Wärmewiderstand:

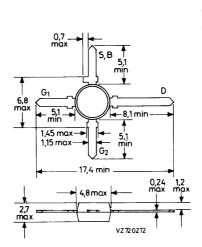
zwischen Kanal und Umgebung: 1)

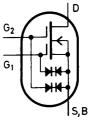
$v_{ m DS}$	= mai.	20	V
I _{D AV}	= max.	30	m.A
±I _{G1S}	= max.	10	mА
±I _{G2S}	= max.	10	mA
Ptot	= max.	225	mW
8 _K	= max.	150	°c
₽ _S	= min.	-65	°C
*s	= mai.	150	°c

 $R_{th} \cdot U \stackrel{\leq}{=} 0,335 \text{ K/mW}$

¹⁾ Transistor auf einseitig 35 µm
Cu-kaschierter Glasfaser-EpoxidLeiterplatte von 40 mm x 35 mm,
1,5 mm stark, liegend, vgl. obenstehende Skizze

Statische Kennwerte: bei 8 _U = 25°C				
Gate 1 - Source - Durchbruchspannung bei U _{G2S} = U _{DS} = 0, ±I _{G1S} = 10 mA: Gate 2 - Source - Durchbruchspannung	U(BR) G1S	s =	620	v
bei $U_{G1S} = U_{DS} = 0$, $\pm I_{G2S} = 10$ mA:	U(BR) G2S	s =	620	v
Gate 1 - Reststrom bei ±U _{G1S} = 5 V, U _{G2S} = U _{DS} = 0:	±I _{G1S S}	≦	50	nA
Gate 2 - Reststrom bei $\pm U_{G2S} = 5$ V, $U_{G1S} = U_{DS} = 0$:	±I _{G2S} S	≦	50	n.A
Drain - Source - Kurzschlußstrom bei U_{DS} = 15 V, U_{G2S} = 4 V:	I _{DS} s	=	220	m.A
Gate - Source - Abschnürspannung bei U_{DS} = 15 V, I_{D} = 20 μ A, U_{G2S} = 4 V: bei U_{DS} = 15 V, I_{D} = 20 μ A, U_{G1S} = 0:	-U _{P G1} -U _{P G2}	<u>≤</u> <u>≤</u>	2,5 2,0	v v
	1 02			
Dynamische Kennwerte: bei U _{DS} = 15 V, U _{G2S}	s = 4 V, I _D =	= 10 m/	A, 8 _U = 25	o°c
<u>Dynamische Kennwerte</u> : bei $U_{DS} = 15 \text{ V}$, U_{G2S} Vorwärtssteilheit bei $f = 1 \text{ kHz}$:	s = 4 V, I _D =		A, 8 _U = 25	o°C ms
Vorwärtssteilheit bei f = 1 kHz: Gate 1 - Eingangskapazität bei f = 1 MHz:		= 17		
Vorwärtssteilheit bei f = 1 kHz: Gate 1 - Eingangskapazität bei f = 1 MHz: Gate 2 - Eingangskapazität bei f = 1 MHz:	y _{21s} C _{11s g1} C _{11s g2}	= 17 = 2,2 =	$7 (\stackrel{>}{=} 15)$ $2 (\stackrel{\leq}{=} 2,6)$ 1,1	mS pF pF
Vorwärtssteilheit bei f = 1 kHz: Gate 1 - Eingangskapazität bei f = 1 MHz: Gate 2 - Eingangskapazität bei f = 1 MHz: Rückwirkungskapazität bei f = 1 MHz:	y _{21s} c _{11s g1} c _{11s g2} c _{12s}	= 17 = 2,2 = = 25	$7 \stackrel{(\stackrel{\searrow}{=} 15)}{(\stackrel{\swarrow}{=} 2,6)}$ $1,1$ $5 \stackrel{(\stackrel{\swarrow}{=} 35)}{(\stackrel{\swarrow}{=} 35)}$	mS pF pF fF
Vorwärtssteilheit bei f = 1 kHz: Gate 1 - Eingangskapazität bei f = 1 MHz: Gate 2 - Eingangskapazität bei f = 1 MHz: Rückwirkungskapazität bei f = 1 MHz: Ausgangskapazität bei f = 1 MHz:	y _{21s} C _{11s g1} C _{11s g2}	= 17 = 2,2 = = 25	$7 (\stackrel{>}{=} 15)$ $2 (\stackrel{\leq}{=} 2,6)$ 1,1	mS pF pF
Vorwärtssteilheit bei f = 1 kHz: Gate 1 - Eingangskapazität bei f = 1 MHz: Gate 2 - Eingangskapazität bei f = 1 MHz: Rückwirkungskapazität bei f = 1 MHz: Ausgangskapazität bei f = 1 MHz: Leistungsvers ärkung bei G _g = 2 mS, G _L = 0,5 mS, f = 200 MHz:	y _{21s} c _{11s g1} c _{11s g2} c _{12s}	= 17 = 2,2 = = 25	$7 \stackrel{(\stackrel{\searrow}{=} 15)}{(\stackrel{\swarrow}{=} 2,6)}$ $1,1$ $5 \stackrel{(\stackrel{\swarrow}{=} 35)}{(\stackrel{\swarrow}{=} 35)}$	mS pF pF fF
Vorwärtssteilheit bei f = 1 kHz: Gate 1 - Eingangskapazität bei f = 1 MHz: Gate 2 - Eingangskapazität bei f = 1 MHz: Rückwirkungskapazität bei f = 1 MHz: Ausgangskapazität bei f = 1 MHz: Leistungsvers ärkung	y _{21s} C _{11s g1} C _{11s g2} C _{12s} C _{22s}	= 17 = 2,2 = = 25 = 0,8	7 (≥ 15) 2 ($\leq 2,6$) 1,1 5 (≤ 35) 8 ($\leq 1,2$)	mS pF pF fF pF
Vorwärtssteilheit bei f = 1 kHz: Gate 1 - Eingangskapazität bei f = 1 MHz: Gate 2 - Eingangskapazität bei f = 1 MHz: Rückwirkungskapazität bei f = 1 MHz: Ausgangskapazität bei f = 1 MHz: Leistungsvers ärkung bei G _g = 2 mS, G _L = 0,5 mS, f = 200 MHz:	y _{21s} C _{11s g1} C _{11s g2} C _{12s} C _{22s} V _p	= 17 = 2,2 = = 25 = 0,8	7 (\geq 15) 2 (\leq 2,6) 1,1 5 (\leq 35) 8 (\leq 1,2) 25	mS pF pF fF pF

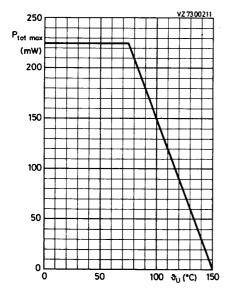

Dieses Datenblatt gibt keine Auskunft über Liefermöglichkeiten.
Die angegebenen Daten dienen allein der Produktbeschreibung und sind nicht als zugesicherte Eigenschaften im Rechtssinne aufzufassen. Etwaige Schadensersatzansprüche gegen uns – gleich aus welchem Rechtsgrund – sind ausgeschlossen, soweit uns nicht Vorsatz oder grobe Fahrlässigkeit trifft.
Es wird keine Gewähr übernommen, daß die angegebenen Schaltungen oder Verfahren frei von Schutzrechten Ditter sind.


Ein Nachdruck - auch auszugsweise - ist nur zulässig mit Zustimmung des Herausgebers und mit genauer Quellenangabe.

N - KANAL - MOS - FELDEFFEKT - TRANSISTOR - TETRODE Verarmungstyp (depletion), mit integrierten Schutzdioden, für UHF-FS-Kanalwähler mit 12 V Speisespannung

Mechanische Daten:

Gehäuse: Kunststoff, SOT-103 Maßangaben in mm.


Kurzdaten:			
Drain - Source - Spannung	UDS = max.	18	v
Drainstrom, Mittelwert	$I_{D \text{ AV}} = \text{max}.$		mA.
Gesamtverlustleistung bei $\vartheta_{\mathrm{U}} \stackrel{\leq}{=} 75^{\circ}\mathrm{C}$	$P_{tot} = max.$	225	mW
Kanaltemperatur	$\vartheta_{\mathbf{K}} = \max.$	150	°c
Vorwärtssteilheit bei U_{DS} = 10 V, U_{G2S} = 4 V, I_{D} = 10 mA	y _{21s} =	19	mS
Rauschzahl bei U_{DS} = 10 V, U_{G2S} = 4 V, I_{D} = 10 mA und f = 800 MHz	F =	2,8	dB
Rückwirkungskapazität bei U_{DS} = 10 V, U_{G2S} = 4 V, I_{D} = 10 mA und f = 1 MHz	c _{12s} =	25	fF

Absolute Grenzwerte:	(gültig	bis	9K	max)
----------------------	---------	-----	----	------

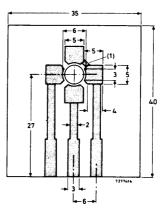
Drain - Source - Spannung:	$\mathbf{u}_{\mathbf{D}\mathbf{S}}$	= max.
Drainstrom, Mittelwert:	I _{D AV}	= max.
Gate 1 - Strom:	±I _{G1S}	= max.
Gate 2 - Strom:	±I _{G2S}	= max.
Gesamtverlustleistung bei $\vartheta_{\text{U}} \stackrel{\leq}{=} 75^{\circ}\text{C}$: 1)	Ptot	= max.
Kanaltemperatur:	⁸ ĸ	= max.
Lagerungstemperatur:	⁹ S	= min.
	⁸ S	= max.

Wärmewiderstand:

zwischen Kanal und Umgebung: 1)

18 V 30 mA

10 mA


10 mA

225 mW 150 °C

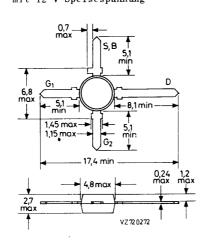
150

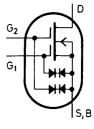
-65 °C

°C

Transistor auf einseitig 35 μm Cukaschierter Glasfaser-Epoxy-Leiterplatte von 40 mm x 35 mm x 1,5 mm, vgl. obenstehende Skizze

Statische Kennwerte: bei $\vartheta_{\text{U}} = 25^{\circ}\text{C}$				
Gate 1 - Source - Durchbruchspannung bei $U_{\rm G2S} = U_{\rm DS} = 0$, $\pm I_{\rm G1S} = 10$ mA: Gate 2 - Source - Durchbruchspannung bei $U_{\rm G1S} = U_{\rm DS} = 0$, $\pm I_{\rm G2S} = 10$ mA:	^{±U} (BR) G1S S ^{±U} (BR) G2S S		8	v v
Gate 1 - Reststrom bei ±U _{G1S} = 7 V, U _{G2S} = U _{DS} = 0:	±I _{G1S} S	≦	25	nA
Gate 2 - Reststrom bei $\pm U_{G2S} = 7$ V, $U_{G1S} = U_{DS} = 0$:	±I _{G2S S}	≦	25	nA
Gate - Source - Abschnürspannung bei $\rm U_{DS}$ = 10 V, $\rm I_D$ = 20 μA , $\rm U_{G2S}$ = 4 V: bei $\rm U_{DS}$ = 10 V, $\rm I_D$ = 20 μA , $\rm U_{G1S}$ = 0:	-U _{P G1} -U _{P G2}	<u>≤</u> <u>≤</u>	1,3 1,1	v v
<u>Dynamische Kennwerte</u> : bei $U_{DS} = 10 \text{ V, I}_{D}$	= 10 mA. U _{G2S}	=	4 V, 8 _U = 25	°c
Vorwärtssteilheit bei f = 1 kHz:	y ₂₁₈	=	19 (≧ 17)	mS
Gate 1 - Eingangskapazität bei f = 1 MHz:	C _{11s g1}	=	2,6	рF
Gate 2 - Eingangskapazität bei f = 1 MHz:	C _{11s g2}	=	1,4	рF
Ausgangskapazität bei f = 1 MHz:	C _{22s}	=	1,1	рF
Rückwirkungskapazität bei f = 1 MHz:	c _{12s}	=	25	fF
Rauschzahl			2,8 (= 3,9)	
bei $f = 800 \text{ MHz und } G_G = 5 \text{ mS}$:	F	=	2,8 (= 3,9)	aB


N - KANAL - MOS - FELDEFFEKT - TRANSISTOR - TETRODE


Verarmungstyp (depletion), mit integrierten Schutzdioden,
für UKW-Tuner und FS-Kanalwähler bis Bereich III

mit 12 V Speisespannung

Mechanische Daten:

Gehäuse: Kunststoff, SOT-103 Maßangaben in mm.

<u>Kurzdaten</u> :			
Drain - Source - Spannung	U _{DS} = max.	20	v
Drainstrom, Mittelwert	$I_{D \text{ AV}} = \text{max}.$	40	mA
Gesamtverlustleistung bei 8 _U ≤ 75°C	$P_{tot} = max.$	225	mW
Kanaltemperatur	$\vartheta_{\mathbf{K}} = \max.$	150	°c
Vorwärtssteilheit bei U_{DS} = 10 V, U_{G2S} = 4 V, I_{D} = 15 mA	y _{21s} =	25	mS
hauschzahl bei $U_{DS} = 10 \text{ V}$, $U_{G2S} = 4 \text{ V}$, $I_{D} = 15 \text{ mA}$ und $f = 200 \text{ MHz}$	F =	1,2	dВ
Rückwirkungskapazität bei U_{DS} = 10 V, U_{G2S} = 4 V, I_{D} = 15 mA und f = 1 MHz	c _{12s} =	30	fF

Absolute Grenzwerte: (gültig bis % max)

Drain - Source - Spannung:

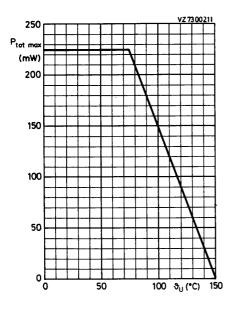
Drainstrom, Mittelwert:

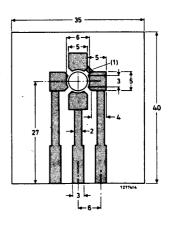
Gate 1 - Strom:

Gate 2 - Strom:

Gesamtverlustleistung bei $\vartheta_{\text{U}} \stackrel{\leq}{=} 75^{\circ}\text{C}$: 1)

Kanaltemperatur:


Lagerungstemperatur:


Wärmewiderstand:

zwischen Kanal und Umgebung: 1)

$\mathbf{u}_{\mathbf{DS}}$	= max.	20	V
I _{D AV}	= max.	40	mA
±I _{G1S}	= max.	10	mA
$^{\pm 1}_{ m G2S}$	= max.	10	m.A.
$\mathbf{P_{tot}}$	= max.	225	mW
8 К	= max.	150	°c
₽s	= min.	-65	o C
*s	= max.	150	°C

 $R_{th\ U} \stackrel{\leq}{=} 0,335\ K/mW$

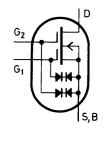
¹⁾ Transistor auf einseitig 35 µm Cukaschierter Glasfaser-Epoxy-Leiterplatte von 40 mm x 35 mm x 1,5 mm, vgl. obenstehende Skizze

Statische Kennwerte: bei $\vartheta_{\mathrm{U}} = 25^{\circ}\mathrm{C}$				
Gate 1 - Source - Durchbruchspannung bei $U_{G2S} = U_{DS} = 0$, $\pm I_{G1S} = 10$ mA:	^{±U} (BR) G1S S	≧	8	v
Gate 2 - Source - Durchbruchspannung bei $U_{G1S} = U_{DS} = 0$, $\pm I_{G2S} = 10$ mA:	±U(BR) G2S S	<u>≥</u>	8	v
Gate 1 - Reststrom bei $\pm U_{G1S} = 7 \text{ V}$, $U_{G2S} = U_{DS} = 0$:	±I _{G1S} S	≦	25	nA
Gate 2 - Reststrom bei $\pm U_{G2S} = 7 \text{ V}$, $U_{G1S} = U_{DS} = 0$:	±I _{G2S} S	≦	25	nA
Gate - Source - Abschnürspannung bei \dot{U}_{DS} = 10 V, I_D = 20 μA , U_{G2S} = 4 V: bei U_{DS} = 10 V, I_D = 20 μA , U_{G1S} = 0:	-U _{P G1} -U _{P G2}	≤	1,3 1,1	v v
Dynamische Kennwerte: bei U_{DS} = 10 V, U_{G2S} =	4 V, $I_{D} = 15$	mA,	$\theta_{\text{U}} = 25^{\circ}\text{C}$	
Vorwärtssteilheit bei f = 1 kHz:	$ \mathbf{y_{21s}} $	=	25 (≧ 20)	mS
Gate 1 - Eingangskapazität bei f = 1 MHz:	C _{11s g1}	=	4,0	\mathbf{pF}
Gate 2 - Eingangskapazität bei f = 1 MHz:	C _{11s g2}	=	1,7	\mathbf{pF}
Ausgangskapazität bei f = 1 MHz:	C _{22s}	=	2,0	\mathbf{pF}
Rückwirkungskapazität bei f = 1 MHz:	C _{12s}	=	30	fF
Rauschzahl bei f = 200 MHz und G = 2 mS:	F	=	1,2	dВ

N - KANAL - MOS - FELDEFFEKT - TRANSISTOR - TETRODE Verarmungstyp (depletion), mit integrierten Schutzdioden, für UHF-FS-Kanalwähler mit 12 V Speisespannung

Mechanische Daten:

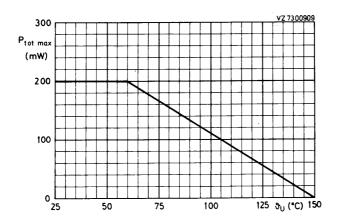
Gehäuse: Kunststoff SOT-143


Stempel: M 90

Kurzdaten:

Maßangaben in mm.

Draufsicht



Drain - Source - Spannung	U _{DS} =	= max.	18	v
Drainstrom, Mittelwert	I _{D AV} =			
Gesamtverlustleistung bei 8 _{rt} ≤ 60°C	P _{tot} =			
Kanaltemperatur	9 _K =	max.	150	°c
Vorwärtssteilheit				
bei $U_{DS} = 10 \text{ V}$, $U_{G2S} = 4 \text{ V}$, $I_{D} = 10 \text{ mA}$	y ₂₁₈	=	19	m.S
Rauschzahl	,			
bei $U_{DS} = 10 \text{ V}$, $U_{G2S} = 4 \text{ V}$, $I_{D} = 10 \text{ mA}$				
und $f = 800 \text{ MHz}$	F	=	2,8	dB
Rückwirkungskapazität				1
bei $U_{DS} = 10 \text{ V}$, $U_{G2S} = 4 \text{ V}$, $I_{D} = 10 \text{ mA}$				j
und f = 1 MHz	C ₁₂	=	25	fF

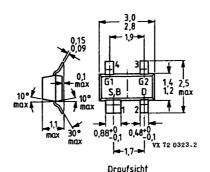
 $\mathbf{c_{12s}}$

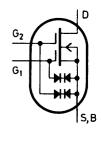
```
(gültig bis \vartheta_{K \text{ max}})
Absolute Grenzwerte:
                                                                                                18
                                                                         UDS
                                                                                    = max.
Drain - Source - Spannung:
                                                                          I D AV
                                                                                                30
                                                                                                      m.A
Drainstrom, Mittelwert:
                                                                                                10
                                                                                                      mA
                                                                                    = max.
Gate 1 - Strom:
                                                                         ±I<sub>G2S</sub>
                                                                                                10
                                                                                                      mA
Gate 2 - Strom:
                                                                                    = max.
Gesamtverlustleistung bei \vartheta_{\mathrm{U}} \stackrel{\leq}{=} 60^{\mathrm{o}}\mathrm{C}: ^{1})
                                                                                    = max.
                                                                                               200
                                                                                                      mW
                                                                         Ptot
                                                                                                      °c
                                                                                               150
                                                                          ϑ<sub>K</sub>
                                                                                    = max.
Kanaltemperatur:
                                                                                                      °c
                                                                                               -65
                                                                          \vartheta_{S}
                                                                                    = min.
Lagerungstemperatur:
                                                                                                      °C
                                                                                               150
                                                                                    = max.
Wärmewiderstand:
                                                                         _{R_{\mathbf{th}\ U}}\ \ \stackrel{\leq}{=}
zwischen Kanal und Umgebung: 1)
                                                                                            0,46 K/mW
```

 $^{^{1}}$) Transistor auf Keramik-Substrat von 8 mm x 10 mm x 0,6 mm

Statische Kennwerte: bei $\vartheta_{\text{U}} = 25^{\circ}\text{C}$				
Gate 1 - Source - Durchbruchspannung bei $U_{G2S} = U_{DS} = 0$, $\pm I_{G1S} = 10$ mA:	^{±U} (BR) G1S S	<u>≥</u>	8	v
Gate 2 - Source - Durchbruchspannung bei $U_{G1S} = U_{DS} = 0$, $\pm I_{G2S} = 10$ mA:	^{±U} (BR) G2S S	<u>≥</u>	8	v
Gate 1 - Reststrom bei $\pm U_{G1S} = 7 \text{ V}$, $U_{G2S} = U_{DS} = 0$:	±I _{G1S} S	≦	25	nA
Gate 2 - Reststrom bei $\pm U_{G2S} = 7$ V, $U_{G1S} = U_{DS} = 0$:	±I _{G2S S}	≦	25	nA
Gate - Source - Abschnürspannung bei U _{DS} = 10 V, I _D = 20 μA, U _{G2S} = 4 V _d	-U _{P G1}	<u>≤</u> <	1,3	v
bei $U_{DS} = 10 \text{ V}, I_{D} = 20 \mu\text{A}, U_{G1S} = 0$:	−U _{P G2}	=	1,1	v
<u>Dynamische Kennwerte</u> : bei $U_{DS} = 10 \text{ V}, I_{D} =$	10 mA, U _{G2S} =	4 \	$V, \vartheta_{\mathrm{U}} = 25^{\circ}\mathrm{C}$:
Vorwärtssteilheit bei f = 1 kHz:	y _{21s}	=	19 (≧ 17)	mS
Gate 1 - Eingangskapazität bei f = 1 MHz:	C _{11s g1}	=	2,6	рF
Gate 2 - Eingangskapazität bei f = 1 MHz:	C _{11s g2}	=	1,4	рF
Ausgangskapazität bei f = 1 MHz:	C _{22s}	=	1,2	рF
Rückwirkungskapazität bei f = 1 MHz:	c _{12s}	=	25	fF
Rauschzahl				
bei $f = 800 \text{ MHz}$ und $G_{m} = 5 \text{ mS}$:	F	=	2.8	dВ

N - KANAL - MOS - FELDEFFEKT - TRANSISTOR - TETRODE
Verarmungstyp (depletion), mit integrierten Schutzdioden,
für UKW-Tuner und VHF-FS-Kanalwähler

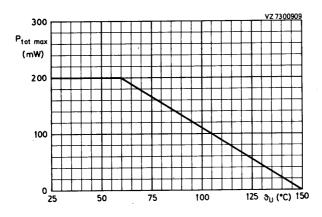

Mechanische Daten:


Gehäuse: Kunststoff

SOT-143

Stempel: M 91

Maßangaben in mm.



Drain-Source-Spannung	U _{DS} = m	ax. 20	v
Drainstrom, Mittelwert	IDAV = m	ax. 20	m.A
Gesamtverlustleistung bei $\vartheta_{II} \stackrel{\leq}{=} 60^{\circ} C$	P _{tot} = m		
Kanaltemperatur	8 _K = m	ax. 150	°C
Vorwärtssteilheit			
bei $U_{DS} = 10 \text{ V}$, $U_{G2S} = 4 \text{ V}$, $I_{D} = 10 \text{ mA}$	y _{21s} =	14	mS
Rauschzahl	•		
bei $U_{DS} = 10 \text{ V}$, $U_{G2S} = 4 \text{ V}$, $I_{D} = 10 \text{ mA}$			
und $f = 200 \text{ MHz}$	F =	1,0	dB
Rückwirkungskapazität			
bei $U_{DS} = 10 \text{ V}$, $U_{G2S} = 4 \text{ V}$, $I_{D} = 10 \text{ mA}$			
$\mathbf{und} \ \mathbf{f} = 1 \ \mathbf{MHz}$	c _{12s} =	20	fF

Absolute Grenzwerte: (gültig bis \$ K max)				
Drain - Source - Spannung:	U _{DS} =	= max.	20	v
		= max.	20	mА
		= max.	30	mА
		= max.	10	mА
		= max.	10	mA
Gesamtverlustleistung bei $\vartheta_{II} \leq 60^{\circ}C$:	P _{tot} =	= max.	200	шW
		= max.	150	°C
	θ _S =	= min. ·	-65	°c
			150	°C
Wärmewiderstand:				
zwischen Kanal und Umgebung: 1)	R _{th U} ≦	0,40	6 K/	'mW

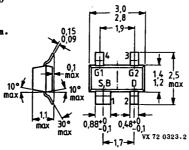
 $^{^{1}}$) Transistor auf Keramik-Substrat von 8 mm x 10 mm x 0,6 mm

Statische Kennwerte: bei ϑ_{U} = 25°C, sofern nicht anders angegeben

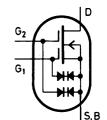
Gate - Source - Durchbruchspannung				
bei $U_{G2S} = U_{DS} = 0$, $\pm I_{G1S} = 10$ mA:	±U(RR) C1S	. ≧	6	v
bei $U_{G1S} = U_{DS} = 0$, $\pm I_{G2S} = 10$ mA:	±U(BR) G1S S ±U(BR) G2S S	3 ≧	6	v
Gate - Reststrom				
bei $\pm U_{G1S} = 5 \text{ V}, U_{G2S} = U_{DS} = 0$:	±I _{G1S} S	<u>≤</u>	50	n.A
bei $\pm U_{G2S} = 5 \text{ V}, U_{G1S} = U_{DS} = 0$:	±I _{G2S} S	≦	50	nA
Drain - Source - Kurzschlußstrom				
bei $U_{DS} = 10 \text{ V}$, $U_{G2S} = 4 \text{ V}$, $U_{G1S} = 0$				
und $\vartheta_{\mathbf{K}} = 25^{\circ} C$:	I _{DS S}	=	425	mA
Gate - Source - Abschnürspannung				
bei $U_{DS} = 10 \text{ V}$, $I_{D} = 20 \mu\text{A}$, $U_{G2S} = 4 \text{ V}$:	-U _{P G1}	≦	2,5 2,5	v
bei $U_{DS} = 10 \text{ V}$, $I_{D} = 20 \mu\text{A}$, $U_{G1S} = 0$;	-U _{P G2}	≦	2,5	v
<u>Dynamische Kennwerte</u> : bei $U_{DS} = 10 \text{ V}$, $U_{G2S} = 4$	v, I _D = 10	mА,	$\vartheta_{\mathrm{U}} = 25^{\mathrm{o}}$	c
<u>Dynamische Kennwerte</u> : bei $U_{DS} = 10 \text{ V}$, $U_{G2S} = 4 \text{ Vorwärtssteilheit bei } f = 1 \text{ kHz}$:	v, I _D = 10		$\vartheta_{\overline{U}} = 25^{\circ}$ $14 \ (\stackrel{>}{=} 10$	
	y _{21s}	=	_	
Vorwärtssteilheit bei f = 1 kHz:	y _{21s} c _{11s g1}	=	14 (≥ 10 2,1)mA pF
Vorwärtssteilheit bei $f=1~\mathrm{kHz}$: Gate 1 - Eingangskapazität bei $f=1~\mathrm{MHz}$:	y _{21s}	=	14 (≧ 10 2,1 1,0)mA pF
Vorwärtssteilheit bei f = 1 kHz: Gate 1 - Eingangskapazität bei f = 1 MHz: Gate 2 - Eingangskapazität bei f = 1 MHz:	y _{21s} c _{11s g1} c _{11s g2}	=	14 (≥ 10 2,1 1,0)mA pF pF
Vorwärtssteilheit bei f = 1 kHz: Gate 1 - Eingangskapazität bei f = 1 MHz: Gate 2 - Eingangskapazität bei f = 1 MHz: Ausgangskapazität bei f = 1 MHz:	y _{21s} c _{11s g1} c _{11s g2} c _{22s}	= =	14 (≥ 10 2,1 1,0 1,1)mA pF pF pF
Vorwärtssteilheit bei f = 1 kHz: Gate 1 - Eingangskapazität bei f = 1 MHz: Gate 2 - Eingangskapazität bei f = 1 MHz: Ausgangskapazität bei f = 1 MHz: Rückwirkungskapazität bei f = 1 MHz: Rauschzahl	y _{21s} c _{11s g1} c _{11s g2} c _{22s}	= = =	14 (≥ 10 2,1 1,0 1,1)mA pF pF pF fF
Vorwärtssteilheit bei f = 1 kHz: Gate 1 - Eingangskapazität bei f = 1 MHz: Gate 2 - Eingangskapazität bei f = 1 MHz: Ausgangskapazität bei f = 1 MHz: Rückwirkungskapazität bei f = 1 MHz:	y _{21s} c _{11s g1} c _{11s g2} c _{22s} c _{12s}	= = =	14 (≥ 10 2,1 1,0 1,1 20)mA pF pF pF fF
Vorwärtssteilheit bei f = 1 kHz: Gate f - Eingangskapazität bei f = 1 MHz: Gate 2 - Eingangskapazität bei f = 1 MHz: Ausgangskapazität bei f = 1 MHz: Rückwirkungskapazität bei f = 1 MHz: Rauschzahl bei G = 2 mS und f = 200 MHz:	y _{21s} C _{11s g1} C _{11s g2} C _{22s} C _{12s}	= = =	$ \begin{array}{ccccccccccccccccccccccccccccccccc$)mA pF pF pF fF
Vorwärtssteilheit bei f = 1 kHz: Gate 1 - Eingangskapazität bei f = 1 MHz: Gate 2 - Eingangskapazität bei f = 1 MHz: Ausgangskapazität bei f = 1 MHz: Rückwirkungskapazität bei f = 1 MHz: Rauschzahl bei G = 2 mS und f = 200 MHz: bei G = 1 mS und f = 100 MHz:	y _{21s} C _{11s g1} C _{11s g2} C _{22s} C _{12s}	= = =	$14 \stackrel{()}{=} 10$ $2,1$ $1,0$ $1,1$ 20 $1,0 \stackrel{(\leq 2,0)}{=} 2$)mA pF pF pF fF

N - KANAL - MOS - FELDEFFEKT - TRANSISTOR - TETRODE Verarmungstyp (depletion), mit integrierten Schutzdioden, für UKW-Tuner und VHF-FS-Kanalwähler

mit 12 V Speisespannung


Mechanische Daten:

Gehäuse: Kunststoff,


S0T-143

Stempel: M 92

Maßangaben in mm.

Draufsicht

Kurzdaten:			
Drain - Source - Spannung	UDS = max.	20	v
Drainstrom, Mittelwert	$I_{DAV} = max.$	40	m.A
Gesamtverlustleistung bei ð _∏ ≤ 60°C	$P_{tot} = max.$		
Kanaltemperatur	$\vartheta_{\mathbf{K}} = \mathbf{max}.$	150	°c
Vorwärtssteilheit bei $U_{DS} = 10$ V, $U_{G2S} = 4$ V, $I_{D} = 15$ mA	y _{21s} =	25	mS
Rauschzahl bei $U_{DS} = 10$ V, $U_{G2S} = 4$ V, $I_{D} = 15$ mA und $f = 200$ MHz	F =	1,2	dВ
Rückwirkungskapazität bei U_{DS} = 10 V, U_{G2S} = 4 V, I_{D} = 15 mA und f = 1 MHz	c _{12s} =	30	fF

Absolute Grenzwerte: (gültig bis $\vartheta_{K max}$)

Drain - Source - Spannung:

UDS

Drainstrom, Mittelwert:

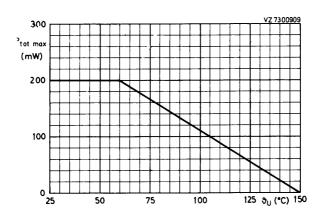
Gate 1 - Strom: Gate 2 - Strom:

Gesamtverlustleistung bei $\vartheta_{U} \stackrel{\leq}{=} 60^{\circ}C$: 1

Kanaltemperatur:

 ${\tt Lagerungstemperatur:}$

I_{D AV} = max.±IG1S 10 mA = max. $^{\pm 1}_{\rm G2S}$ = max.10 Ptot 200 = max.°с θĸ 150 °c -65 ⁹S = min. 150 = max.


= max.

20 V

Wärmewiderstand:

zwischen Kanal und Umgebung: 1)

 $R_{th\ U} \stackrel{\leq}{=} 0,46\ K/mW$

 $^{^{1}}$) Transistor auf Keramik-Substrat von 8 mm x 10 mm x 0,6 mm

```
bei 8<sub>II</sub> = 25<sup>0</sup>C
Statische Kennwerte:
Gate - Source - Durchbruchspannung
                                                               ±U(BR) G1SS ≧
  bei U_{G2S} = U_{DS} = 0, \pm I_{G1S} = 10 mA:
                                                                                                   v
  bei U_{G1S} = U_{DS} = 0, \pm I_{G2S} = 10 mA:
                                                               ±U(BR) G2S S
                                                                                            8
                                                                                                   v
Gate - Reststrom
  bei \pm U_{G1S} = 7 \text{ V}, U_{G2S} = U_{DS} = 0:
                                                               ±I<sub>G1S</sub> S
                                                                                           25
                                                                                                   nA
  bei \pm U_{G2S} = 7 \text{ V}, U_{G1S} = U_{DS} = 0:
                                                               ±I<sub>G2S</sub> s
                                                                                          25
                                                                                                   nA
Gate - Source - Abschnürspannung
  bei U_{DS} = 10 V, I_{D} = 20 \mu A, U_{G2S} = 4 V:
                                                                                 = 0,2...1,3 V
                                                               -U<sub>P G1</sub>
  bei U_{nS} = 10 V, I_n = 20 \muA, U_{G1S} = 0:
                                                               -UP G2
                                                                               = 0,2...1,1 V
<u>Dynamische Kennwerte</u>: bei U_{DS} = 10 \text{ V}, U_{G2S} = 4 \text{ V}, I_{D} = 15 \text{ mA}, \vartheta_{II} = 25^{\circ}\text{C}
                                                                                = 25 (\stackrel{>}{=} 20) \text{ mS}
Vorwärtssteilheit bei f = 1 kHz:
                                                               |\mathbf{y}_{218}|
Gate 1 - Eingangskapazität bei f = 1 MHz:
                                                               C<sub>11s g1</sub>
                                                                                         4,0
Gate 2 - Eingangskapazität bei f = 1 MHz:
                                                                                         1,7
                                                               C<sub>11s g2</sub>
                                                                                                   рF
                                                               \mathbf{c_{22s}}
Ausgangskapazität bei f = 1 MHz:
                                                                                = 2,0
                                                                                 = 30 (\stackrel{\leq}{=} 40) fF
Rückwirkungskapazität bei f = 1 MHz:
                                                               C<sub>12s</sub>
Rauschzahl
  bei G_{\sigma} = 2 mS und f = 200 MHz:
                                                                                         1,2
                                                               F
                                                                                                   dB
```