

Ausführung Diffundierte Si-Thyristoren mit internem Gate-Kurzschluß im Metallgehäuse TO 66, Anode galvanisch mit dem Gehäuse verbunden.

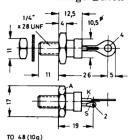
Anwendung Universeller Schalt- und Regel-Thyristor mit hoher Sicherheit gegen Überlastung.

$\underline{\text{Grenzwerte}}$ bei $T_{\underline{G}}$ =25 o C

		BTW 27/100R	BTW 27/200R	BTW 27/400R	BTW 27/600R	
neg. und pos. Scheitelsperr- spannung	U _{RW} /U _{DW}	100	200	400	600	V
neg. und pos. Spitzensperr- spannung	U _{RR} /U _{DR}	100	200	400	600	V
negative Stoßsperrspannung	URS	150	300	500	700	V
Thyristor-Dauergrenzstrom $\Psi = 180^{\circ}$, $T_G = 75^{\circ}C$	I _{T(AV)}	4,7				A
effektiver Thyristorstrom T _G = -20 75°C	I _{T(eff)}	7,4				A
Grenzlastintegral	i ² t	50				A ² s
Thyristor-Stoßstrom t =10 ms p	I _{TS}	100				A
Stromsteilheit in Flußrichtung T _j =100°C	di/dt	200				A/μs
0,67 U _{DW}						
$I_{TS}^{=10} I_{T(AV)}$						
$I_{GT} = 80 mA$						
$t = 0.1 \mu s$						
Lagertemperatur	$^{\mathrm{T}}\mathrm{_{S}}$	-20	. 125			°C
Betriebstemperatur	T _j	-20	. 100			°C

$\underline{\text{Allgemeine Kennwerte}} \text{ bei } \text{T}_j \text{= -20...100}^o\text{C}$

pos. und neg. Sperrstrom	I	$^{\rm D/I}_{ m R}$	<1,5	mA
$T_j = 100^{\circ}C$	BTW 27/100R		< 5	
Haltestrom T _G =25°C	I	H	15 (<50)	mA
$I_{GT} = 0$				
Durchlaßspannung I _T =3 I _T (AV)	U	Т	1,7(<3)	V
Gate-Triggerstrom $U_{AK}^{=12V}$ $R_{L}^{=12\Omega}$	I	GT	15 (<50)	mA
Gate-Triggerspannung UAK = 12V	U	GT	0,7 (<2)	V
Kritische Spannungs- steilheit wiederangelegte Spannung = 0,67 UDW	d	u/dt	300	V /μs
Thermischer Widerstand Sperrschicht/Gehäuse	. R	thG	3	°C/W



BTW 28/A/500 R BTW 28/A/600 R BTW 28/A/700 R BTW 28/A/800 R

vorläufige Daten

Ausführung Schnelle diffundierte Si-Thyristoren für höchstes di/dt (1000 A/µs) und geringe Schaltverluste im Metallgehäuse TO 48. Anode galvanisch mit dem Gehäuse verbunden.

Anwendung Wechselrichter, Radarmodulator, Impulsgenerator hoher Leistung, schnelle kapazitive Entladungen, Löschthyristor für Wechselrichter, schnelle Entladung von Verzögerungsleitungen.

<u>Grenzwerte</u> bei T _G = 25°C		BTW 28/500 R BTW 28 A/500 R	BTW 28/600 R BTW 28 A/600 R	BTW 28/700 R BTW 28 A/700 R	BTW 28/800 R BTW 28 A/800 R	
negative Scheitel- sperrspannung (1)	U_{RW}	150/500	200/600	250/700	300/800	V
positive Scheitel- sperrspannung (1)	U_{DW}	500	600	700	800	V
negative Stoß- sperrspannung	$U_{ m RS}$	250/600	300/700	350/800	400/900	V
Thyristor-Dauer- grenzstrom $\varphi = 180^{\circ}$ bei $T_j = -6540^{\circ}C$	I _{T(AV)}	25	<u> </u>		-	A
effektiver Thyristor- strom	I _{T(eff)}	35	~			A
Grenzlastintegral	$i^2 \overline{t}$	160				A
Thyristorstoßstrom(2) sinusförmiger Impuls $t_p = 10 \text{ ms}$ bei $T_j = 120^{\circ}\text{C}$	I_{TS}	180			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	A ² s
Stromsteilheit (4) in Durchlaßrichtung I $_{TS} \le 200 \text{ A}$ UAK = 0,67 UDW UGK = 20 V RGK = 20 Ω Steuer-Impulslänge $\ge 1,5 \ \mu \text{s}$ Impulsanstiegszeit $\le 0,1 \ \mu \text{s}$	di/dt	1000				Α /μs

Grenzwerte bei $T_G = 25^{\circ}C$ (Fortsetzung)

Gate-Spitzensperrspannung	$U_{ m GR}$	10	V
Gate-Durchlaßstrom	I_{GF}	6	A
mittlere Gate-Verlustleistung	PG(AV)	1	W
Gate-Spitzenverlustleistung (3) $t_p < 100 \mu s$	P_{GS}	40	W
Sperrschichttemperatur	Тј	- 65 120	^o C C
Lagertemperatur	$T_{\mathbf{S}}$	- 65 150	°C

BTW 28/A/500 R BTW 28/A/600 R BTW 28/A/700 R BTW 28/A/800 R

vorläufige Daten

Allgemeine Kennwerte bei $T_G = 25^{\circ}C$

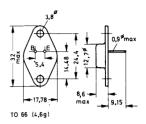
	J			
negativer Sperrstrom (1) bei T _G = 120°C	$I_{\mathbf{R}}$	BTW 28/A/500 R	<6	mA
U _{AK} = U _{RW}		BTW 28/A/600 R	<6	
1111 ICAA		BTW 28/A/700 R	<5,5	
		BTW 28/A/800 R	<4	7
positiver Sperrstrom (1)	I_{D}	BTW 28/A/500 R	<3,5	mA
bei $T_G = 120^{\circ}C$ $U_{AK} = U_{DW}$	_	BTW 28/A/600 R	<3	\dashv
OAK ODW		BTW 28/A/700 R	<2,5	-
		BTW 28/A/800 R	<2	
Haltestrom	I_{H}	, ,	45	mA
$V_{GK} = 0$	11			
U _{AKW} = 24 V I _{TW} = 3 A				
$_{\text{bei}}^{\text{TW}}$ T _G = -65°C			150	-
Durchlaßspannung	$U_{\mathbf{T}}$		1,8(<2,05)	V
I _T = 25 A				
Gate-Triggerstrom	$^{ m I}_{ m GT}$		50(<150)	mA
bei $T_G = -65^{\circ}C$			120(<500)	
Gate-Triggerspannung	$^{ m U}_{ m GT}$		1,3(<3)	V
$U_{AK} = 6 \text{ V}$ $R_{L} = 4 \Omega$,			
bei $T_G = -65^{\circ}C$			2(<4,5)	_
Gate-Spannung	$\rm u_{GF}$		<0,25	V
ohne Zündung	GF		10,20	,
$U_{AK} = U_{DW}$ $R_L = 200 \Omega$				
bei $T_G = 120^{\circ}C$				
Freiwerdezeit	t _q		<20	μs
$du/dt = 200 V/\mu s$	q			
bis $U_{AK} = 0.67 U_{DW}$ $I_{TS} = 10 A$ (sinusförmig)				
$t_D = 2 \mu s$				
Wiederholungsfrequenz 50 Hz				
Steuerkreis über 20 Ω geschlos	ssen			
geschlossen				
Sperrspannung im Umschalt- moment ≤300 dann ≤50 V				
siehe Bild 1 und 2				
Freilaufdiode parallel-				1
geschaltet			<35	

Allgemeine Kennwerte bei $T_G = 25^{\circ}C$ (Fortsetzung)

Freiwerdezeit bei Zwangs-	tq	<20	μs
kommutierung	-1		
Wiederholungsfrequenz 50 Hz			
I _{TS} = 10 A (Rechteckimpuls)			
Impulsdauer ≥50 μs			
Impulsanstiegszeit ≤10 A/μs			
Impulsabstiegszeit ≤5 A/μs			
Steuerkreis über 100 Ω			
geschlossen			
$du/dt = 200 \text{ V}/\mu \text{s} \text{ bis } U_{AK} = 0,67 U_{DW}$			
Sperrspannung im Umschalt-			
moment≤ U_{DW} dann ≤50 V			
kritische Spannungsteilheit	du/dt	500(>200)	V/μs
$U_{GK} = 0$			
$U_{ m R}^{=}$ 0 bis 0,67 $U_{ m DW}$ ansteigend			
Thermischer Widerstand			oC/M
Sperrschicht/Gehäuse	\mathbf{R}_{thG}	<1,7	

Anmerkung

- (1) maximaler thermischer Widerstand Sperrschicht/Umgebung $R_{\rm thU}$ = 50/W für diese Messung.
- (2) nach diser Messung darf die Sperrspannung nicht unmittelbar wiederangelegt werden.
- (3) für Impulsdauer von 500 μ s:20 W 5 ms: 10 W
- (4) bei einer geringeren Gatespannung ist das von Thyristor zu ertragende di/dt sehr viel geringer, z.B. 40 A/ μ s bei nur 5 V Gatespannung.



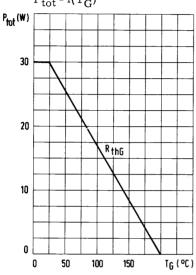
BU 103 A

vorläufige Daten

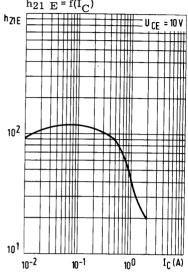
Ausführung Leistungstransistor in Mesa-Technik im Metallgehäuse TO 66, galvanisch mit dem Kollektor verbunden.

Anwendung Geeignet zum Einbau in die Ausgangsstufe der Vertikal-Ablenkung von Fernsehngeräten mit 110°C Bildschirm.

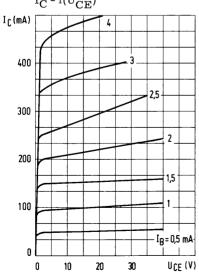
$\frac{\text{Grenzwerte}}{\text{Grenzwerte}}$ bei $T_{G} = 25^{\circ}\text{C}$


Kollektor-Basis-Spannung	$^{ m U}_{ m CBO}$	120	V
Kollektor-Emitter-Spannung	UCEO	100	V
$R_{ m BE}$ = 220 Ω	$\overline{^{ ext{U}}_{ ext{CER}}}$	120	
Emitter-Basis-Spannung	U_{EBO}	8	V
Kollektorstrom	^I C	1	A
Gesamtverlustleistung	P _{tot}	30	w
Sperrschichttemperatur	Тj	200	°C
Lagertemperatur	T_{S}	-65200	°C
Wärmewiderstand			°C/W
Sperrschicht/Gehäuse	R_{thG}	<6	

Allgemeine Kennwerte bei $T_G = 25^{\circ}C$

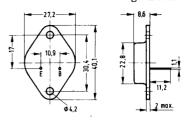

Kollektor-Basis- Reststrom	U _{CBO} = 80 V	I _{CBO}	<100	μA
Kollektor-Emitter- Durchbruchspannung R_{BE} = 220 Ω	I _{CER} = 100 mA	U(BR)CER*	>120	V
statische Strom- verstärkung U _{CE} = 10 V	I _C = 0,2 A	^h 21E *	50 200	
Transitfrequenz UCE = 10 V f = 10 MHz	I _C = 0,1 A	f_{T}	100	MHz
Ausgangskapazität in Basisschaltung	U _{CBO} = 10 V	C _{22b}	50	pF

 $^{^*}$ Impuls weise gemessen: t_p <300 $\mu \text{s,}\delta <2\%$


Zulässige Gesamtverlustleistung P_{tot} = f(T_G)

Statische Stromverstärkung $h_{21} \to f(I_C)$

Ausgangskennlinien $I_C = f(U_{CE})$



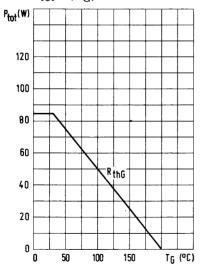
BU 112

vorläufige Daten

Ausführung NPN Leistungstransistor in Mesa-Technik im Metallgehäuse TO 3 (DIN 3 A 2), galvanisch mit dem Kollektor verbunden.

Anwendung Ausgangsstufe für 90° Horizontalablenkung in Farb-Fernsehgeräten.

TO 3

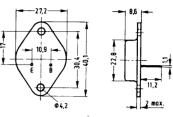

$\underline{\text{Grenzwerte}}$ bei $T_{\text{G}} = 25^{\circ}\text{C}$

Kollektor-Basis-Spannung	UCBO	550	V
Kollektor-Emitter-Spannung	U_{CEO}	275	V
R $_{ m BE}$ = 100 Ω	$\overline{\mathrm{U_{CER}}}$	300	
$U_{ m BE}$ = -5 V	$\overline{\mathrm{U}_{\mathrm{CEX}}}$	550	_
Emitter-Basis-Spannung	$\rm U_{EBO}$	10	V
Kollektorstrom	$I_{\mathbf{C}}$	10	A
Basisstrom	I_{B}	4	A
Gesamtverlustleistung bei T _G = 30°C	P _{tot}	85	W
Sperrschichttemperatur	Тj	200	°C
Lagertemperatur	T _S	-65200	°C
Wärmewiderstand	~~~~		°C/W
Sperrschicht/Gehäuse	$R_{ m thG}$	<2	

<u>Allgemeine Kennwerte</u> bei $T_{U} = 25^{\circ}C$

Kollektor-Basis- Reststrom	U _{CBO} = 250	I _{CBO}	<500	μΑ
Kollektor-Emitter- Reststrom	U _{CEX} = 550 V U _{BE} = -5 V	I _{CEX}	<10	mA
Emitter-Basis- Durchbruchspannung	I _E = 10 mA	U(BR)EBO	>10	v
statische Strom- verstärkung UCE = 2 V	I _C = 6 A	^h 21 E	>7	
Transitfrequenz UCE = 4 V f = 10 MHz	$I_C = 0.5 A$	${ m f}_{ m T}$	6	MHz
Ausgangskapazität in Basisschaltung f = 1 MHz	U _{CBO} = 10 V	C _{22 b}	200	pF
Abfallzeit	I _C = 6 A	^t f	<1	μs

$$\begin{split} &Zul{\tt \"assige}\\ &Gesamtverlustleistung\\ &P_{tot} = f(T_G) \end{split}$$



BU 113

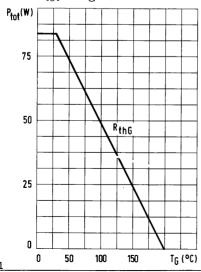
vorläufige Daten

Ausführung Leistungstransistor in Mesa-Technik, Gehäuse TO 3, galvanisch mit dem Kollektor verbunden.

<u>Anwendung</u> Ausgangsstufe für 110⁰ Horizontal Ablenkung in Farbfernsehgeräten

10 3

Grenzwerte bei $T_G = 25^{\circ}C$


Kollektor-Basis-Spannung	U _{СВО}	700	V
Kollektor-Emitter-Spannung	UCEO	275	V
$R_{ m BE} = 100\Omega$	UCER	350	
$U_{ m BE} = -5V$	UCEX	700	
Emitter-Basis-Spannung	U _{EBO}	10	V
Kollektorstrom	^I C	10	A
Basisstrom	I _B	4	A
Gesamtverlustleistung bei T _G = 30°	P _{tot}	85	W
Sperrschichttemperatur	Тj	200	°C
Lagertemperatur	Ts	-65 200	°C
Wärmewiderstand			°C/W
Sperrschicht/Gehäuse	${ m R}_{ m thG}$	<2	

Allgemeine Kennwerte bei $T_G = 25^{\circ}C$

Emitter-Basis- Durchbruchspannung	I _{EBO} = 30 mA	U(BR)EBO*	>10	V
Kollektor-Emitter- Restspannung	I _C = 10 A	UCEsat*	<3	V
Kollektor-Emitter- Reststrom U _{BE} = 5 V	$U_{CEX} = 250 \text{ V}$ $U_{CEX} = 700 \text{ V}$	ICEX	<2 <10	mA .
statische Strom verstärkung	IC = 8 A UCE = 2 V	h ₂₁ E	>7	
Ausgangskapazität in Basisschaltung f=1 MHz	U _{CBO} = 10 V	C _{22b}	200	pF
Transitfrequenz f = 10 MHz U _{CE} = 15 V	I _C = 0,5 A	$^{\mathrm{f}}\mathrm{_{T}}$	5	MHz
Abfallzeit	I _C = 8 A I _{B1} = 1,6 A -I _{B2} = 1,6 A	$t_{\mathbf{f}}$	<1	με

 $^{^*}$ Impuls weise gemessen:t $_{\rm p}$ = 300 $\mu{\rm s}$, δ <2%

Zulässige Gesamtverlustleistung $P_{tot} = f(T_G)$

02.71