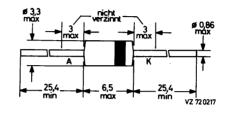


NICHT FÜR NEUENTWICKLUNGEN

BY 208/...

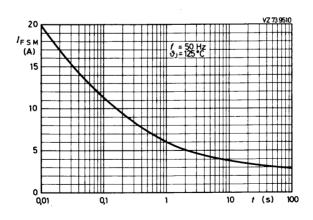

Schnelle "soft recovery" - SILIZIUM - GLEICHRICHTERDIODEN

Mechanische Daten:

Gehäuse: Kunststoff, JEDEC DO-15 (SOD-40)

Das Kunststoffgehäuse erfüllt die Kurzprüfung "Feuchte Wärme" nach DIN 40 046 bzw. nach IEC 68-2D.

Maßangaben in mm.

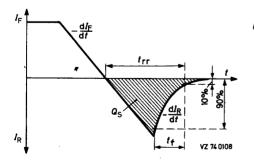

Lötung:

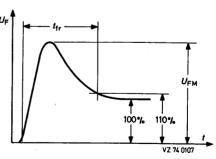
Bei einer Kolbentemperatur bzw. Lottemperatur $\stackrel{\leq}{=} 300^{\circ} \text{C}$ beträgt die zulässige Lötzeit max. 3 s, die Lötstellen müssen min. 5 mm vom Gehäuse entfernt sein. Die Temperatur des Kunststoffgehäuses darf an etwaigen Berührungsstellen 125°C nicht übersteigen.

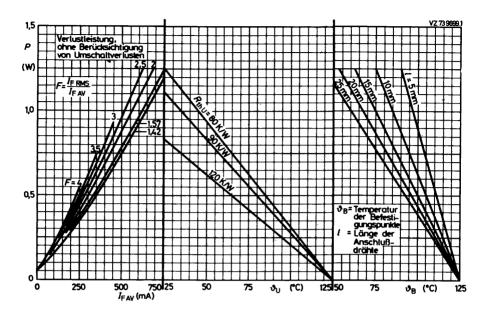
Biegestellen an den Anschlußdrähten müssen min. 1,5 mm vom Gehäuse entfernt sein, es darf kein Zug auf die Anschlußdrähte ausgeübt werden.

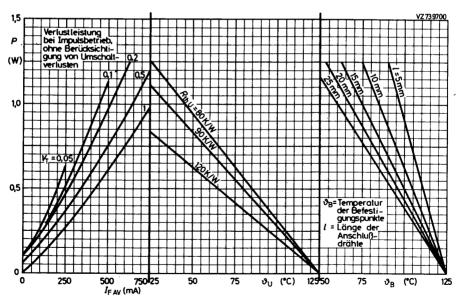
Kurzdaten:		BY 208	/600 / <u>8</u>	00	/ <u>1000</u>	
Periodische Spitzensperrspannung	U _{R R}	M = max.	600 8	00	1000	v
Durchlaßstrom, Mittelwert	I _{F A}	v = max.	7	50		mA
Periodischer Spitzenstrom	I _{F·R}			5		A
Durchlaßspannung						
bei $I_F = 2 \text{ A und } \vartheta_J = 25^{\circ}\text{C}$	U _F	<	1,	,8		v
Sperrstrom	•					
bei $U_{R \ W \ M \ max}$, $\vartheta_{J} = 25^{\circ} C$	$\mathbf{I}_{\mathbf{R}}$	<	1	10		μΑ
Sperrverzugsladung						
nach I _F = 400 mA	Q_{S}	<	8	30		nAs

Absolute Grenzwerte:		BY 208	<u>3/600</u>	/ <u>800</u>	/1000	
Gleichsperrspannung:	$\mathbf{U_R}$	= max.	400	600	800	v
Periodische Scheitelsperrspannung:	U _{RWM}	= max.	400	600	800	v
Periodische Spitzensperrspannung, $t \leq 12 \mu s$:		= max.	600	800	1000	v
Stoß-Spitzensperrspannung, $t \leq 10 \text{ ms}$:	U _{R S M}	= max.	600	800	1000	v
Durchlaßstrom, Mittelwert,				750		
$t_{av} \leq 20 \text{ ms};$	I _{F AV}	= max.		750		m.A
Periodischer Spitzenstrom:	I _{FRM}	= max.		5		A
Stoßstrom, $t = 10 \text{ ms}$, $\vartheta_J = 125^{\circ}\text{C}$:	I _{FSM}	= max.		20		A
Sperrschichttemperatur:	$\mathfrak{d}_{\mathbf{J}}$	= max.		125		°c
Lagerungstemperatur:	⁸ S	= min.		-65		°c
	₽ _S	= max.		125		°c
Wärmewiderstand:						
zwischen Sperrschicht und Umgebung,						
bei Befestigung auf Leiterplatte:	$\mathbf{R}_{\mathbf{th}}$ U	=		120		K/W
bei Befestigung an Lötfahnen, mit je 10 mm Drahtlänge:	R _{th U}	=		80		K/W
mit voller Drahtlänge:	R _{th U}	=		90		K/W

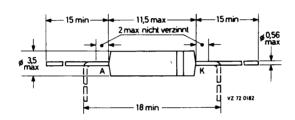

Statische Kennwerte:


Sperrverzugsladung


Durchlaßspannung bei $I_F = 2$ A und $\theta_J = 25$ °C:	$\mathbf{u}_{\mathbf{F}}$	<	1,8	v
Sperrstrom bei $U_{R \ W \ M \ max}$ und $\vartheta_{J} = 25^{\circ}C$: bei $U_{R \ W \ M \ max}$ und $\vartheta_{J} = 125^{\circ}C$:			10 80	


<u>Dynamische Kennwerte</u>: bei $\vartheta_{,I} = 25^{\circ}C$

bein Umschalten von $I_F = 400$ mA auf $U_R \le 50$ V mit $-dI_F/dt = 400$ mA/ μs :	<	80	nAs
Sperrverzögerungszeit			
beim Umschalten von $I_F = 400$ mA auf $U_D \ge 50$ V			
mit $-dI_{\rm F}/dt = 400$ mA/ μ s:	<	1,4	цs
mit $-dI_{p}/dt = 20 A/\mu s$:	<	1,4 350	ne
	•		
Anderungsgeschwindigkeit des Ausräumstroms beim Umschalten von $I_F=400$ mA auf $U_D\stackrel{\geq}{=}50$ V			
mit $-dI_F/dt = 400 \text{ mA}/\mu s$:	at <	1,5	A/µs
Einschalt-Scheitelspannung			
beim Einschalten auf $I_F = 100$ mA mit $t_r = 50$ ns: $U_{F, p}$	٠	10	v
Durchlaßverzögerungszei t			
beim Einschalten auf $I_F = 100$ mA mit $t_r = 50$ ns: t_{fr}	<	800	ns


"soft recovery" - SILIZIUM - HOCHSPANNUNGS-GLEICHRICHTER für Fernsehempfänger

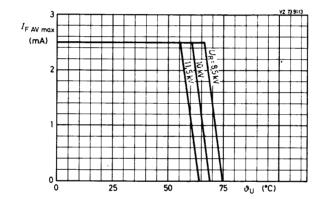
Mechanische Daten:

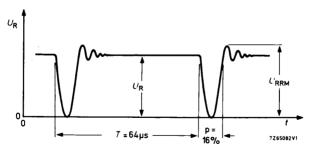
Gehäuse: Kunststoff, SOD-34/5

Maßangaben in mm.

Kurzdaten:

Sperrspannung	$\mathbf{U}_{\mathbf{R}}$	= max.	11,5	kV
Spitzensperrspannung		$_{M} = max.$		
Durchlaßstrom, Mittelwert	I _{F AV}	= max.	2,5	mA
Durchlaßstrom, Spitzenwert			200	
Durchlaßspannung bei $I_F = 100$ mA, $\vartheta_J = 75^{\circ}C$	u _F I _R	≦	23	v
Sperrstrom bei $U_R = 10^{\circ} kV$, $\vartheta_J = 75^{\circ} C$	IR	≦	4	μΑ


Bei Spannungen > 6 kV muß die BY 209 vergossen (R $_{\rm th~U} \stackrel{\leq}{=} 120$ K/W) betrieben werden.


Die BY 209 kann Überschlägen in der Bildröhre widerstehen.

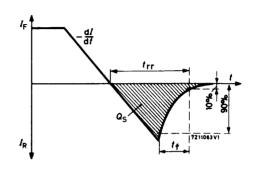
Absolute Grenzwerte:

Sperrspannung: 1)	Į
Periodische Spitzensperrspannung:	Ţ
Stoß-Spitzensperrspannung ($t = 10 \text{ ms}$):	τ
Durchlaßstrom, Mittelwert ($t_{av_2} \le 20 \text{ ms}$): Periodischer Spitzenstrom:]
Sperrschichttemperatur:	{
Lagerungstemperatur:	8

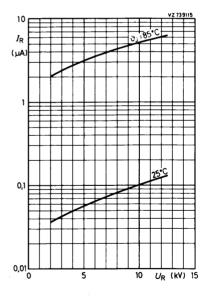
=	max.	11,5	kV
=	max.	12,5	kV
=	max.	12,5	kV
=	max.	2,5	mA
=	max.	200	mA
=	max.		
=	min.	-55	°c
=	max.	85	$^{\mathbf{o}}\mathbf{c}$
	= = = = =	= max. = max. = max. = max.	= min55

bei Spannungen > 6 kV muß die BY 209 vergossen (R $_{
m th~U} \stackrel{\leq}{=} 120$ K/W) betrieben werden

²⁾ während 20 % der Ablenkperiode sind 500 mA zulässig; die BY 209 kann Überschlägen in der Bildröhre widerstehen.


Kennwerte:


Durchlaßspannung bei $I_F = 100$ mA, $\vartheta_J = 75$ °C: $U_F \stackrel{\leq}{=} 23$ V


Sperrstrom bei U_R = 10 kV, ϑ_J = 75 0 C: $I_D \stackrel{\checkmark}{=} 4 \mu A$

Schaltverhalten beim Umschalten von I $_{F}=200$ mA auf U $_{R}=100$ V bei $\vartheta_{J}=25\,^{0}\mathrm{C}$ mit $-\mathrm{dI/dt}=200$ mA/ μs :

Sperrverzugs-ladung: $Q_S = 15$ nAs Sperrverzögerungs-zeit: $t_{rr} = 1,0$ μs Abfallzeit: $t_f = 0,8$ μs

BY 249/...

A - K

SILIZIUM - GLEICHRICHTERDIODEN

BY 249/...R

Höchstzulässiger Durchlaßstrom, Mittelwert

 $I_{EAV} = 6.5$ A

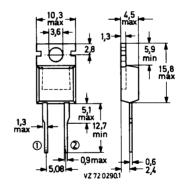
Höchstzulässige periodische Spitzensperrspannung

 $U_{RRM} = 300 / 600 \text{ V}$

ABMESSUNGEN in mm

Gehäuse: Kunststoff

mit metallischem Montageflansch, ≈ JEDEC TO-220, aber 2 Anschlüsse


BY 249/...:

Anschluß 1: Katode Anschluß 2: Anode

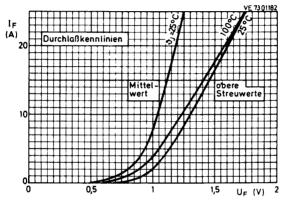
BY 249/...R:

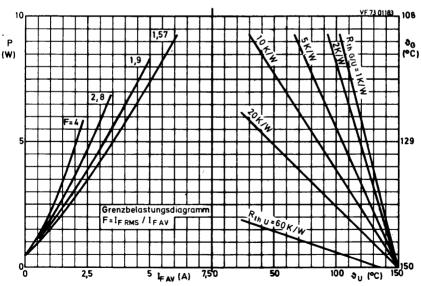
Anschluß 1: Anode Anschluß 2: Katode

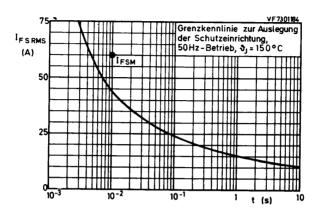
Der Anschluß 1 ist mit dem metallischen Montageflansch leitend verbunden.

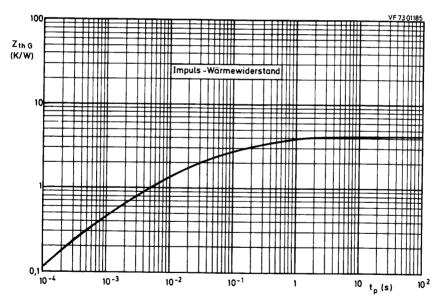
SPANNUNGSGRENZWERTE		BY 249	/300(R) / <u>600(</u> B	2)
Höchstzulässige Gleichsperrspannung: 1)	U _R	=	200	400	v
Höchstzulässige periodische Scheitelsperrspannung: Höchstzulässige periodische Spitzensperrspannung:	U _{R W}		200 300	400	v
Personne phronensherrahammig;	U _{R R}	M =	300	600	V
STROMGRENZWERTE					
Höchstzulässiger Durchlaßstrom, Mittelwert,					
sinusförmiger Stromverlauf, bei $\vartheta_{G} \leq 110^{\circ}C$:		I _{F AV}	=	6,5	A
bei 8 _G = 125°C:		I _{F AV}	=	4,0	A
Höchstzulässiger Durchlaßstrom-Effektivwert:		I _{F RMS}	=	9,5	A
Höchstzulässiger periodischer Spitzenstrom:		I _{FRM}	-	60	A
Stoßstrom-Grenzwert, 50 Hz - Sinus - Stromhalbwelle, bei ð _J = 150°C;	:	I _{FSM}	-	60	A
Grenzlast-Integral, t = 10 ms:		$\int_{1^2 dt}^{3 dt}$	=	18	A^2s
THERMISCHE EIGENSCHAFTEN					
Höchstzulässige Sperrschichttemperatur:		$\mathfrak{b}_{\mathbf{J}}$	=	150	°c
Lagerungstemperaturbereich:		*s	= -4	0+150	°c
Wärmewiderstand					
zwischen Sperrschicht und Montageflansch:		R _{th G}	=	4,2	K/W
zwischen Montageflansch und Kühlblech, mit Wärmeleitpaste, ohne Glimmerscheibe:		R _{th G/E}	· =	0,3	K/W
, mit Glimmerscheibe $\stackrel{<}{=}$ 60 μ m:		R _{th G/E}		1,4	K/W
, mit Glimmerscheibe 56 369;		R _{th G/E}		2,2	K/W
, mit Isolierscheibe 56 367:		R _{th G/E}		0,8	K/W
ohne Wärmeleitpaste, ohne Glimmerscheibe		R _{th G/E}		1,4	K/W
zwischen Sperrschicht und Umgebung:		R _{th U}	=	60	K/W

 $[\]overline{1}$) aus Gründen thermischer Stabilität nur bei $R_{\mathrm{th}\ U} \stackrel{\leq}{=} 15\ \mathrm{K/W}$


DURCHLASS- und SPERR-EIGENSCHAFTEN

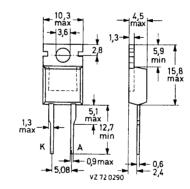

Durchlaßspannung bei $I_F = 5$ A, $\vartheta_J = 100$ C: U_F bei $I_F = 20$ A, $\vartheta_J = 25$ C: U_F


U_F < 1,6 V


Sperrstrom bei $U_{R\ W\ M\ max}$ und ϑ_{J} = 125 o C:

I_D < 0,4 mA

Schnelle "soft recovery" - SILIZIUM - GLEICHRICHTERDIODEN



Höchstzulässiger Durchlaßstrom, Mittelwert	$I_{FAV} =$	8	A
Höchstzulässige periodische Spitzensperrspannung	$U_{R R M} =$	8001200	v
Sperrverzugsladung beim Umschalten von $I_F = 2$ A auf $U_R \ge 30$ V	Q _S <	0,7	μAs
Sperrverzögerungszeit beim Umschalten von $I_F = 1$ A auf $U_R \stackrel{>}{=} 30$ V	t _{rr} (150	ns

ABMESSUNGEN in mm

Gehäuse: Kunststoff
mit metallischem
Montageflansch,
≈ JEDEC TO-220,
aber 2 Anschlüsse

Der Katodenanschluß ist mit dem Montageflansch leitend verbunden.

SPANNUNGSGRENZWERTE

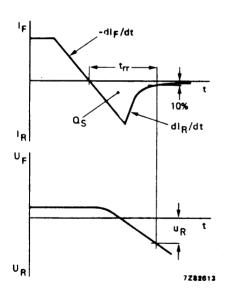
Höchstzulässige • periodische Spitzen- sperrspannung:	Höchstzulässige periodische Scheitel- sperrspannung:	<u>Τ</u> ΥΡ:
$U_{R R M} = 800 V$	$U_{R W M} = 600 V$	BY 329/800
1000 V	800 V	BY 329/1000
1200 V	1000 V	BY 329/1200

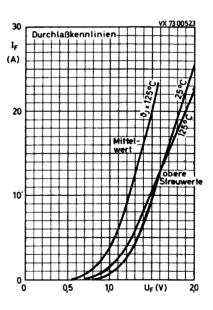
STROMGRENZWERTE

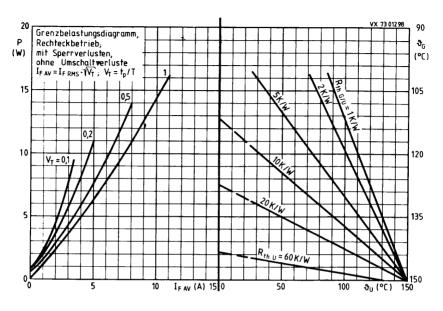
STROMGRENZWERTE				
Höchstzulässiger Durchlaßstrom, Mittelwert,				
rechteckförmiger Stromverlauf, $V_{\pi} = 0.5$,				
bei $\vartheta_{G} \stackrel{\leq}{=} \frac{1}{108} {}^{\circ}C$;	I _{F AV}	=	8,0	A
bei $\vartheta_{G}^{0} = 125^{\circ}C$:	I _{F AV}	=	5,3	A
sinusförmiger Stromverlauf	I A.			
bei ϑ _G ≤ 113°C:	I _{F AV}	=	7,0	A
bei % _G = 125°C:	I _{F AV}	=	5,2	A
Höchstzulässiger Durchlaßstrom - Effektivwert:	I _{F RMS}	=	11	A
Höchstzulässiger periodischer Spitzenstrom:	I _{FRM}	=	80	A
Stoßstrom - Grenzwert, 50 Hz - Sinus - Stromhalbwelle, bei 3 _J = 150°C:	I _{F S M}	=	80	A
THERMISCHE EIGENSCHAFTEN				
Höchstzulässige Sperrschichttemperatur:	$\mathfrak{d}_{\mathbf{J}}$	=	150	°C
Lagerungstemperaturbereich:	A	_	-40+150	°c
	⁹ s	=	107777100	•
Wärmewiderstand	*S	-	100004100	Ū
Wärmewiderstand zwischen Sperrschicht und Montageflansch:	-	_	3,0	K/W
	R _{th G}	=		K/W
zwischen Sperrschicht und Montageflansch:	R _{th G}			K/W
zwischen Sperrschicht und Montageflansch: zwischen Montageflansch und Kühlblech,	R _{th G}	=	3,0	
zwischen Sperrschicht und Montageflansch: zwischen Montageflansch und Kühlblech, mit Wärmeleitpaste, ohne Glimmerscheibe:	R _{th G} R _{th G/K} R _{th G/K}	=	3,0	K/W
zwischen Sperrschicht und Montageflansch: zwischen Montageflansch und Kühlblech, mit Wärmeleitpaste, ohne Glimmerscheibe: , mit Glimmerscheibe ≤ 60 μm:	R _{th} G R _{th} G/K R _{th} G/K R _{th} G/K	=======================================	3,0 0,3 1,4	K/W K/W
zwischen Sperrschicht und Montageflansch: zwischen Montageflansch und Kühlblech, mit Wärmeleitpaste, ohne Glimmerscheibe:, mit Glimmerscheibe = 60 µm:, mit Glimmerscheibe 56 369:	R _{th G} R _{th G/K} R _{th G/K}	= =	3,0 0,3 1,4 2,2	K/W K/W K/W

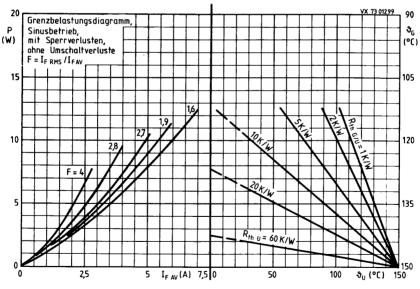
DURCHLASS- und SPERR-EIGENSCHAFTEN, DYNAMISCHE EIGENSCHAFTEN

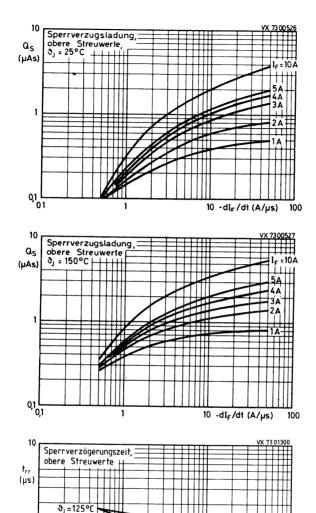
Durchlaßspannung bei $\mathbf{F}_{\mathbf{F}} = 20 \text{ A}, \ \vartheta_{\mathbf{J}} = 25^{\circ}\text{C}$:	$\mathbf{u}_{\mathbf{F}}$	<	1,85	v
Sperrstrom bei $U_{R \ W \ M \ max}$ und $\vartheta_{J} = 125^{\circ}C$:	$\mathbf{I}_{\mathbf{R}}$	<	1,0	mA

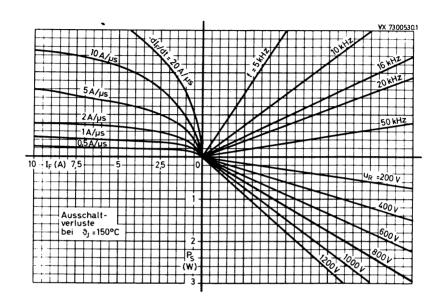

Schaltverhalten

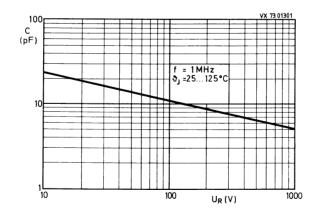

beim Umschalten von I = 2 A auf U $\stackrel{>}{=}$ 30 V mit $-dI_F/dt = 20$ A/ μ s bei $\vartheta_J = 25^{\circ}C$: Sperrverzugsladung: Q $^{\circ}$ < 0,7 $^{\circ}$ μ As Änderungsgeschwindigkeit des Ausräumstromes: $|dI_R/dt| < 60 \text{ A/}\mu\text{s}$

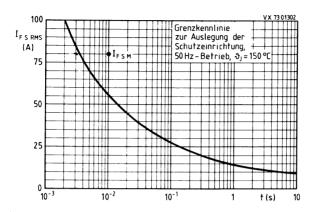

beim Umschalten von $I_F = 1$ A auf $U_R \stackrel{>}{=} 30$ V mit $-dI_F/dt = 50$ A/ μs bei $\vartheta_J = 25$ C:


Sperrverzögerungszeit:


 $t_{r\dot{r}}$ < 150 ns







0,1 L 0,1

-dI_F/dt (A/µs) 100

Schnelle SILIZIUM - GLEICHRICHTERDIODEN,
u.a. zur Antiparallelschaltung bei GTO - Thyristoren



Höchstzulässiger Durchlaßstrom, Mittelwert	I _{F AV}	=	6,5	A
Höchstzulässige periodische Spitzensperrspannung	U _{R R M}	= 1	00015	00 V
Sperrverzugsladung und Sperrverzögerungszeit beim Umschalten von I $_{ m F}$ = 2 A auf U $_{ m R}$ $\stackrel{>}{=}$ 30 V			2,0 0,6	
	$\mathbf{t_{rr}}$	<	0,6	μs

ABMESSUNGEN in mm

Gehäuse: Kunststoff
mit metallischem
Montageflansch,
≈ JEDEC T0-220,
aber 2 Anschlüsse

Der Katodenanschluß ist mit dem Montageflansch leitend verbunden.

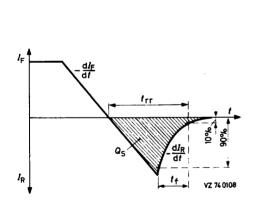
SPANNUNGSGRENZWERTE

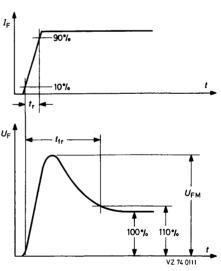
Höchstzulässige periodische Spitzen- sperrspannung:	Höchstzulässige periodische Scheitel- sperrspannung:	Höchstzul: Gleich- sperrspan			<u> </u>	
$U_{R R M} = 1000 V$	$U_{R W M} = 800 V$	$U_R = 6$	600 V		BY 359/10	00
1300 V	1200 V		750 V		BY 359/13	00
1500 V	1300 V	8	800 V		BY 359/15	00
STROMGRENZWERTE	nyahla0atnan Mitta	1 m.k				
-	urchlaßstrom, Mitte romverlauf, 8 _G ≦ 94	•	т	_	6,5	A
	ď		I _{F AV}	-	0,0	A
Höchstzulässiger D	urchlaßstrom - Effek	tivwert: '	I _{F RMS}	=	10	A
Höchstzulässiger p	eriodischer Spitzen	strom:	I _{FRM}	=	60	A
Stoßstrom - Grenzwe 50 Hz - Sinus - Stro	rt, mhalbwelle, bei 🥄 :	= 125°C:	I _{F S M}	=	60	A
THERMISCHE EIGENSC	HAFTEN					
Höchstzulässige Sp	errschichttemperatu	r:	9 ,J	=	125	°c
Lagerungstemperatu	rbereich:		⁸ S	=	-40+150	°C
Wärmewiderstand						
zwischen Sperrscl	hicht und Montagefla	ansch:	R _{th G}	=	3,0	K/W
zwischen Montage:	flansch und Kühlble	ch,	 .			
	aste, ohne Glimmers		R _{th G/K}	=	0,3	K/W
, mit Glin	mmerscheibe ≤ 60 μm:	1	R _{th G/K}	=	1,4	K/W
, mit Glim	mmerscheibe 56 369;		R _{th G/K}		2,2	K/W
, mit Glim	mmerscheibe 56 367:		R _{th G/K}		0,8	K/W
ohne Wärmeleit	paste, ohne Glimmers	scheibe:	R _{th G/K}		1,4	K/W
zwischen Sperrsch	nicht und Umgebung:		R _{th U}	=	60	K/W

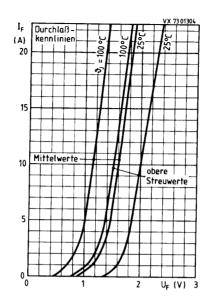
 $[\]frac{1}{1}$) aus Gründen thermischer Stabilität nur bei R_{th U} $\stackrel{\leq}{=}$ 10,4 K/W

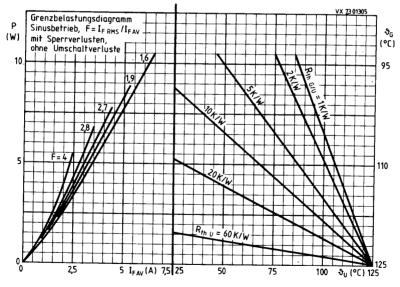
DURCHLASS- und SPERR-EIGENSCHAFTEN, DYNAMISCHE EIGENSCHAFTEN

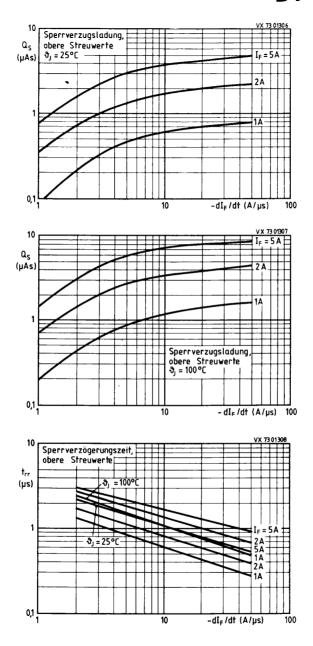
Durchlaßspannung bei $I_F = 20 \text{ A}$, $\vartheta_J = 25^{\circ}\text{C}$:	$\mathtt{u}_{\mathbf{F}}$	<	2,3 V
Sperrstrom bei $U_{R \ W \ M \ max}$ und $\vartheta_{J} = 100^{\circ}C$;	$\mathbf{I}_{\mathbf{R}}$	<	0,6 mA

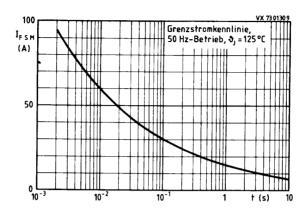

Schaltverhalten

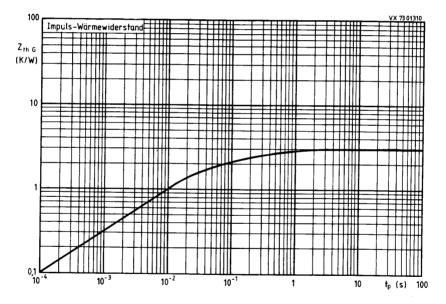

beim Umschalten von I $_F$ = 2 A auf U $_R \stackrel{>}{=} 30$ V mit $-\text{dI}_F/\text{dt}$ = 20 A/ μs bei ϑ_J = 25°C :

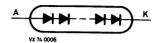

_{F'} 20 1., µ2 301 0 _J - 20 0.				
Sperrverzugsladung:	Q_{S}	<	2,0	μAs
Sperrverzögerungszeit:	$\mathbf{t_{rr}}$	<	0,6	μs
beim Einschalten auf $I_F = 5 \text{ A}$ mit $t_r = 0.1 \mu \text{s}$ bei $\vartheta_J = 25^{\circ}\text{C}$:				


Durchlaßverzögerungszeit:


 $t_{ ext{fr}}$ < 1,0 μs

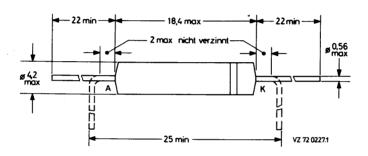






"soft recovery"-

SILIZIUM - HOCHSPANNUNGS - GLEICHRICHTER


für Fernsehempfänger

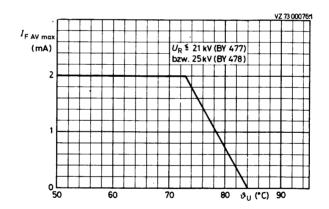
Mechanische Daten:

Gehäuse: Kunststoff, SOD-56

Maßangaben in mm.

Kurzdaten:			BY 477	BY 47	8
Sperrspannung	$\mathbf{v}_{\mathbf{R}}$	= max	21,0	25,0	kV
Spitzensperrspannung	U _{RR}	M = max	23,0	27,5	k۷
Durchlaßstrom, Mittelwert	I _F AV			2	mА
Durchlaßstrom, Spitzenwert		M = max	. 50	0	mA
Durchlaßspannung		,			
bei $I_F = 100 \text{ mA}, \vartheta_J = 100^{\circ}\text{C}$	$^{\mathrm{U}}\mathbf{_{F}}$	≟	5	0	V
Sperrstrom bei $U_{R \text{ max}}$ und $\vartheta_J = 100^{\circ}$ C	$I_{\mathbf{R}}$	≦		3	μΑ

Bei Spannungen > 9 kV muß die BY 477 bzw. BY 478 vergossen (R $_{\rm th~U} \stackrel{\leq}{=}$ 120 K/W) betrieben werden.


Die BY 477 bzw. BY 478 kann Überschlägen in der Bildröhre widerstehen.

BY 477 BY 478

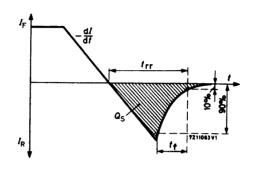
Absolute Grenzwerte:

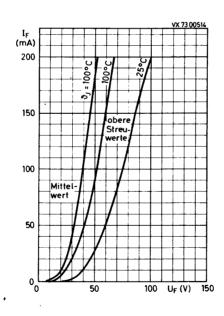
Sperrspannung: 1)
Periodische Spitzensperrspannung:
Stoß-Spitzensperrspannung ($t \le 10$ ms):
Durchlaßstrom, Mittelwert ($t_{av} \le 20$ ms):
Durchlaßstrom, Spitzenwert: 2)
Sperrschichttemperatur:
Lagerungstemperatur:

		BY 477	BY 478	
$\mathbf{U}_{\mathbf{R}}$	= max	. 21,0	25,0	kV
U _{RRM}	= max	. 23,0	27,5	kV
$\mathbf{U}_{\mathbf{R}}$ s m	= max	. 27,0	32,0	kV
I _{F AV}	= max	• :	2	mA
I _{FRM}	= max	. 500)	mA
8,,	= max	. 100)	°c
₽ _S	= min	65	5	°C
₽ _S	= max	. 100)	°C

¹⁾ Bei Spannungen > 9 kV muß die BY 477 bzw. BY 478 vergossen betrieben werden (R_{th II} \leq 120 K/W).

²) Die BY 477 bzw. BY **47**8 kann Überschlägen in der Bildröhre widerstehen.

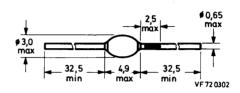

Kennwerte:


Durchlaßspannung bei $I_F = 100$ mA, $\vartheta_J = 100^{\circ}C$: $U_F \leq 50$ V

Sperrstrom bei $U_{R \text{ max}}$ und $\vartheta_{J} = 100^{\circ}\text{C}$: $I_{D} \stackrel{\checkmark}{\leq} 3 \mu \text{A}$

Schaltverhalten beim Umschalten von I $_{\rm F}=200$ mA auf U $_{\rm R}=100$ V bei $\vartheta_{\rm J}=25^{\rm o}{\rm C}$ mit $-{\rm dI}_{\rm F}/{\rm dt}=200$ mA/ $\mu{\rm s}$:

$$Q_S$$
 = 2,0 nAs
 t_{rr} = 0,4 μs
 t_f > 0,15 μs

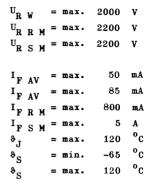


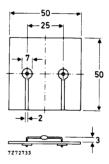
Schnelle "soft recovery" SILIZIUM - GLEICHRICHTERDIODE
mit hoher Sperrspannung

Mechanische Daten:

Gehäuse: Glas, SOD-61
Der Katodenanschluß
ist durch einen
schwarzen Farbring
gekennzeichnet.
Maßangaben in mm.

Kurzdaten:			i
Scheitelsperrspannung	URW = max.	2000	v
Spitzensperrspannung	$U_{RRM} = max.$	2200	v
Durchlaßstrom, Mittelwert		85	m.A
Durchlaßstrom, Spitzenwert	$I_{FRM} = max.$	800	mA
Durchlaßspannung bei $I_F = 100 \text{ mA}, \vartheta_J = 120^{\circ}\text{C}$	u _{F} ≦	8,5	v
Sperrstrom bei $U_R = U_{R \text{ w max}}$ und $\vartheta_J = 120^{\circ}\text{C}$	ı _R ≦	3,0	$\boldsymbol{\mu} \boldsymbol{A}$


Absolute Grenzwerte:

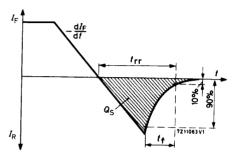

Scheitelsperrspannung:
Periodische Spitzensperrspannung:
Stoß-Spitzensperrspannung ($t \le 10 \text{ ms}$):
Durchlaßstrom, Mittelwert ($t_{av} \le 20 \text{ ms}$)
bei Befestigung auf Leiterplatte, $\vartheta_U = 60^{\circ}\text{C}$:
bei $\vartheta_B = 25^{\circ}\text{C}^{-1}$) und Drahtlänge 10 mm:
Durchlaßstrom, periodischer Spitzenwert:
Stoßstrom, Sinus-Halbwelle ($t \le 10 \text{ ms}$):
Sperrschichttemperatur:
Lagerungstemperatur:

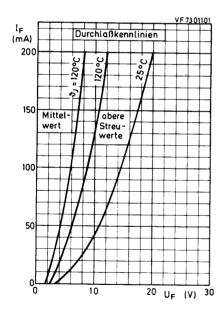
Wärmewiderstand:

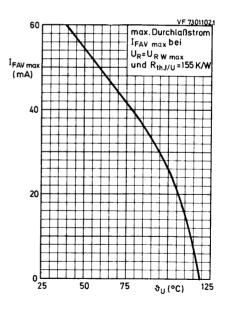
zwischen Sperrschicht und Umgebung bei Befestigung auf Leiterplatte von 50 mm x 50 mm x 1,5 mm mit \geq 40 μ m Kupfer, vgl. Skizze:

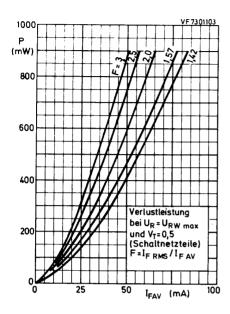
$$R_{th\ U} = 155\ K/W$$

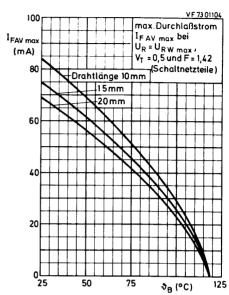
 $^{^{1}) \}quad \vartheta_{B} \ \, \underset{an \ \, der \ \, Befestigungsstelle}{\text{ist}}$

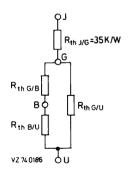

Kennwerte:


Durchlaßspannung bei $J_F = 100$ mA und $\vartheta_J = 120^{\circ} C$: Sperrstrom bei $U_{RW} = 2000$ V und $\vartheta_J = 120^{\circ} C$: $U_{\mathbf{F}} \stackrel{\leq}{=} 8,5 \quad V$ $I_{\mathbf{R}} \stackrel{\leq}{=} 3,0 \quad \mu A$


Schaltverhalten


beim Umschalten von $I_F = 100$ mA auf $U_R \ge 100$ V bei $\vartheta_J = 25$ °C mit $-dI_F/dt = 200$ mA/ μ s:


Sperrverzügsladung: $Q_S \leq 1 \text{ nAs}$ Sperrverzögerungszeit: $t_{rr} = 0.2 \text{ } \mu \text{s}$ Abfallzeit: $t_f \geq 0.1 \text{ } \mu \text{s}$



Der Wärmewiderstand zwischen Sperrschicht und Umgebung setzt sich aus mehreren Anteilen zusammen (vgl.Skizze):

 $R_{th\ J/G}$ = Wärmewiderstand zwischen Sperrschicht und Gehäuse, = 35 K/W

 $R_{th~G/U}$ = Wärmewiderstand zwischen Gehäuse und Umgebung

 $R_{
m th~G/B}$ = Wärmewiderstand zwischen Gehäuse und Befestigungsstelle

 $R_{th~B/U}$ = Wärmewiderstand zwischen Befestigungsstelle und Umgebung.

 $R_{\mathrm{th}~G/B}$ und $R_{\mathrm{th}~G/U}$ sind von der Drahtlänge abhängig:

= je 5 10 15 20

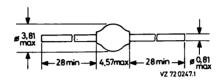
38 114 152 190 K/W $R_{th \cdot G/B} =$ 410 330 280 K/W 750 560

 $R_{th G/U} =$ $R_{\rm th}$ B/U ist von der Befestigungsart abhängig; für Leiterplatten von 1,5 mm Stärke mit $\ge 40~\mu m$ Kupfer gilt

 $R_{\text{th }B/U} = 70 \text{ K/W}$ bei Montage ähnlich Skizze auf der

zweiten Seite dieses Datenblattes

 $R_{\rm th~B/U}$ = 55 K/W bei Montage auf Leiterplatte mit 1 cm² Kupferbelag pro Anschluß


 $R_{
m th~B/U}$ = 45 K/W bei Montage auf Leiterplatte mit 2,25 cm² Kupferbelag pro Anschluß

Mechanische Daten:

Gehäuse: Glas, SOD-57 Die Katodenseite ist durch einen Farbring gekennzeichnet.

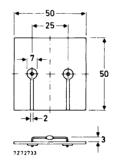
Maßangaben in mm.

Kurzdaten:				
Scheitelsperrspannung	U _{RWM}	= max.	800	v
Spitzensperrspannung	U _{RRM}	= max.	1250	v
Durchlaßstrom, Mittelwert	I _{F AV}	= max.	2	A
Durchlaßstrom, Spitzenwert	I _{FRM}	= max.	12	A
Aufnehmbare Spitzenleistung im Durchbruch	P_{RSM}	= max.	1	kW
Durchlaßspannung bei $I_F = 10 \text{ A}, \vartheta_J = 25^{\circ}\text{C}$	u _f	<	1,65	v
Sperrstrom bei $U_{R \ W \ M \ max}$ und $\vartheta_{J} = 25^{\circ} C$	$\overline{\mathbf{I}}_{\mathbf{R}}$	<	1,0	μΑ
Durchbruchspannung	U(BR)	>	1250	v

Absolute Grenzwerte:

(gültig bis $\vartheta_{J \text{ max}^{\$}}$ sofern nicht anders angegeben)

o man				
Gleichsperrspannung:	$\mathbf{U}_{\mathbf{R}}$	= max.	800	v
Periodische Scheitelsperrspannung:	U _{RWM}	= max.	800	v
Periodische Spitzensperrspannung $(V_T \leq 0.01)$:	U _{RRM}	= max.	1250	v
Durchlaßstrom, Mittelwert $(t_{av} = max. 20 ms)$				
bei $R_{th B} = 46 \text{ K/W}, \vartheta_B = 35^{\circ} \text{C}$:	I _{F AV}	= max.		
bei $\mathbf{R}_{\text{th U}} = 100 \text{ K/W}, \vartheta_{\text{U}} = 75^{\circ}\text{C}$:	I _{F AV}	= max.	0,8	A
Periodischer Spitzenstrom:	I _{FRM}	= max.	12	A
Stoßstrom ¹), Scheitelwert einer sinus- förmigen Stromhalbwelle bei 50 Hz - Betrieb:		= max.		
Aufnehmbare Spitzenleistung im Durchbruch bei $t=20~\mu s$:	P _{RSM}	= max.	1	kW
Aufnehmbare Energie im Durchbruch	24 0			
bei I _R = 1 A:	E _{RSM}	= max.	20	mWs
Sperrschichttemperatur:	∂ T	= max.	165	°c
Lagerungstemperatur:	∌ _S	= min.	-65	°C
	⁸ S	= max.	175	°C

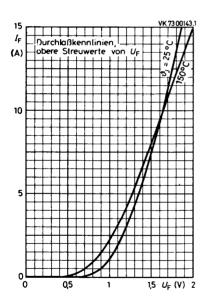

Wärmewiderstand:

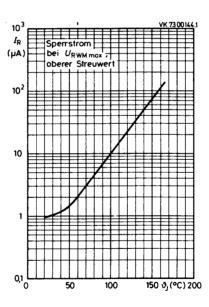
zwischen Sperrschicht und Befestigungspunkten bei je 10 mm Drahtlänge:

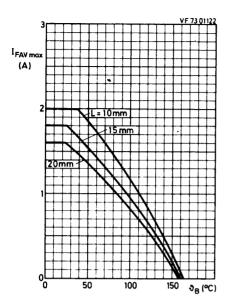
$$R_{th B} = 46 \text{ K/W}$$

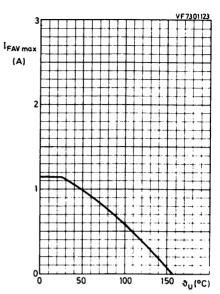
zwischen Sperrschicht und Umgebung bei Befestigung auf Leiterplatte 50 mm x 50 mm x 1,5 mm (vgl. Skizze):

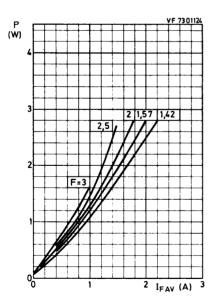
$$R_{th U} = 100 \text{ K/W}$$

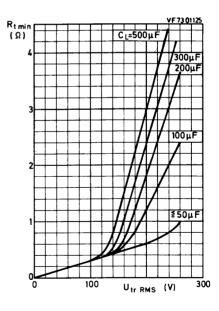

 $^{^1}$) Die Gleichrichterdiode BY 527 verträgt Einschaltströme eines 200 μF - Kondensators bei $\rm U_{tr~RMS}$ = 220 V über $\rm R_{t}$ = 2,4 $\rm \Omega$

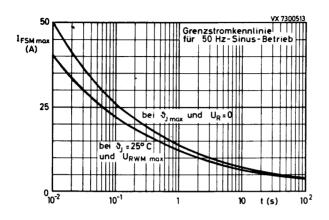

<u>Kennwerte</u>: bei $\vartheta_J = 25^{\circ}C$, sofern nicht anders angegeben

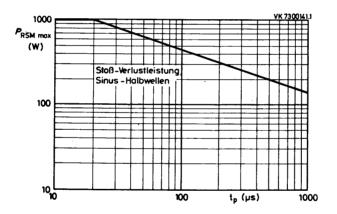

Durchbruchspannung bei I(BR) = 0,1 mA:	U(B)	>	1250	v
Durchlaßspannung bei I _F = 1 A:	U _F	<	1,0	v
bei $I_F = 10 A$:	$\mathbf{u}_{\mathbf{F}}^{-}$	<	1,65	v
Sperrstrom bei UR W M max	I_R	<	1	$\mu \mathbf{A}$
bei $U_{R \ W \ max}$ und $\vartheta_{J} = 100^{\circ}C$:	$\mathbf{I}_{\mathbf{R}}$	<	10	μΑ
Sperrschichtkapazität bei $U_R = 0$, $f = 1$ MHz:	C	=	50	рF
Umschaltverhalten beim Umschaltan von I _F = 1 A auf U _R \geq 50 V				

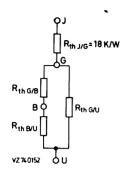

 $mit - dI_F/dt = 5 A/\mu s:$

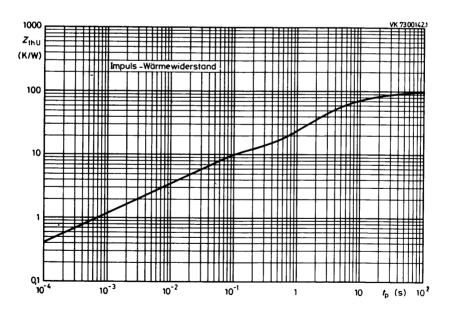

Sperrverzugsladung: Sperrverzögerungszeit:



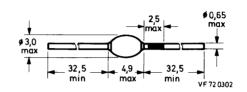








Der Wärmewiderstand zwischen Sperrschicht und Umgebung setzt sich aus mehreren Anteilen zusammen (vgl.Skizze): $R_{th J/G} = W \ddot{a}rmewiderstand zwischen Sperrschicht und$ Gehäuse, = 18 K/W $R_{\mathrm{th}~\mathrm{G/U}}$ = Wärmewiderstand zwischen Gehäuse und Umgebung $R_{th~G/B}$ = Wärme widerstand zwischen Gehäuse und Befestigungsstelle $R_{th~B/U}$ = Wärmewiderstand zwischen Befestigungsstelle und Umgebung. $R_{\mathrm{th}~G/B}$ und $R_{\mathrm{th}~G/U}$ sind von der Drahtlänge abhängig: 10 $R_{th G/B} =$ 15 30 •60 K/W $R_{th}^{on} \frac{G/U}{G/U} = 580$ 445 350 290 245 K/W $\rm R_{th~B/U}$ ist von der Befestigungsart abhängig; für Leiterplatten von 1.5 mm Stärke mit \geq 40 μm Cu gilt $R_{\text{th B/U}} = 70 \text{ K/W}$ bei Montage lt. Skizze auf der zweiten Seite dieses Datenblattes $R_{\rm th~B/U}$ = 55 K/W bei Montage auf Leiterplatte mit 1 cm² Kupferbelag pro Anschluß


 $R_{\rm th~B/U}$ = 45 K/W bei Montage auf Leiterplatte mit 2,25 cm² Kupferbelag pro Anschluß.

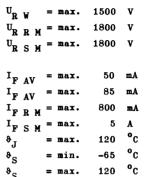
Schnelle "soft recovery" SILIZIUM - GLEICHRICHTERDIODE
mit hoher Sperrspannung,
u.a. für die U_{G2} - Versorgung
in Farbfernsehempfängern

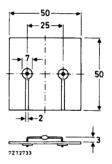
Mechanische Daten:

Gehäuse: Glas, SOD-61
Der Katodenanschluß
ist durch einen
schwarzen Farbring
gekennzeichnet.
Maßangaben in mm.

Kurzdaten:

Scheitelsperrspannung	$U_{p,w} = max.$	1500 V
Spitzensperrspannung	$U_{R R M} = max.$	
Durchlaßstrom, Mittelwert	$I_{FAV} = max.$	85 mA
Durchlaßstrom, Spitzenwert	$I_{FRM} = max.$	800 mA
Durchlaßspannung bei $I_F = 100 \text{ mA}, \vartheta_J = 120^{\circ}\text{C}$	υ _{F} ≦	8,5 V
Sperrstrom bei $U_R = U_R W_{max}$ und $\vartheta_J = 120^{\circ}C$	ı _R ≦	3,0 μΑ


Absolute Grenzwerte:


Scheitelsperrspannung: Periodische Spitzensperrspannung: Stoß-Spitzensperrspannung ($t \le 10$ ms): Durchlaßstrom, Mittelwert ($t_{av} \le 20$ ms) bei Befestigung auf Leiterplatte, $\vartheta_U = 60^{\circ}\text{C}$: bei $\vartheta_B = 25^{\circ}\text{C}^{-1}$) und Drahtlänge 10 mm: Durchlaßstrom, periodischer Spitzenwert: Stoßstrom, Sinus-Halbwelle ($t \le 10$ ms): Sperrschichttemperatur: Lagerungstemperatur:

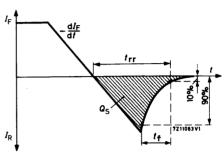
Wärmewiderstand:

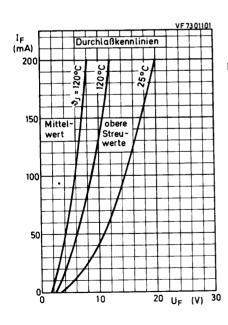
zwischen Sperrschicht und Umgebung bei Befestigung auf Leiterplatte von 50 mm x 50 mm x 1,5 mm mit \geq 40 μ m Kupfer, vgl. Skizze:

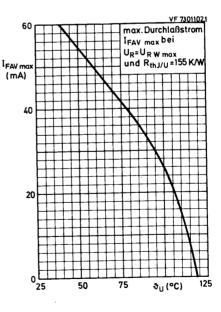
$$R_{th\ U} = 155\ K/W$$

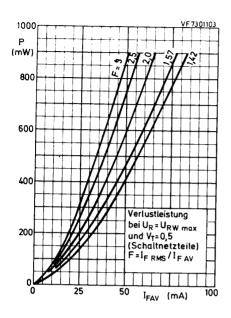
 $^{^{1}) \}quad ^{\vartheta}_{B} \ \, \text{ist die Temperatur} \\ \text{an der Befestigungsstelle}$

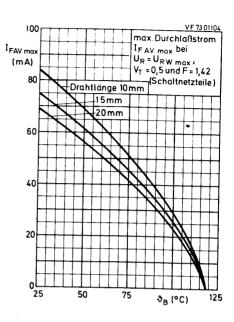
Kennwerte:

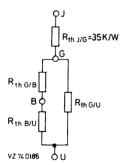

Durchlaßspannung bei $I_F = 100$ mA und $\vartheta_{,I} = 120$ °C: Sperrstrom bei $U_{RW} = 1500 \text{ V} \text{ und } \vartheta_{J} = 120^{\circ}\text{C}$:


Schaltverhalten


beim Umschalten von $I_F = 100 \text{ mA}$ auf $U_R \ge 100 \text{ V bei } \vartheta_J = 25^{\circ}\text{C}$ mit $-dI_F/dt = 200 \text{ mA/}\mu\text{s}$:


Sperrverzugsladung: Sperrverzögerungszeit: $t_{rr} = 0.2 \mu s$ Abfallzeit: $t_{f} = 0.1 \mu s$


1 nAs



Der Wärmewiderstand zwischen Sperrschicht und Umgebung setzt sich aus mehreren Anteilen zusammen (vgl.Skizze):

 $R_{\text{th J/G}}$ = Wärmewiderstand zwischen Sperrschicht und Gehäuse, = 35 K/W

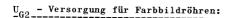
R_{th G/U} = Wärmewiderstand zwischen Gehäuse und Umgebung

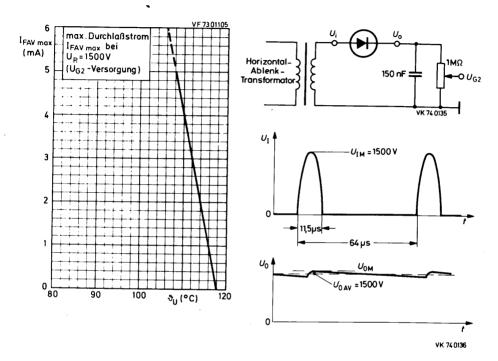
 $R_{th~G/B}$ = Wärmewiderstand zwischen Gehäuse und Befestigungsstelle

 $R_{\mathrm{th\ B/U}} = \begin{tabular}{ll} Warmewider stand\ zwischen\ Befestigungsstelle\ und\ Umgebung. \end{tabular}$

 $^{R}\mathrm{_{th~G/B}}$ und $^{R}\mathrm{_{th~G/U}}$ sind von der Drahtlänge abhängig:

 $\frac{\text{th } G/B}{\text{L}}$ = je 5 10 15 20 25 mm


 $R_{\rm th~G/B} = 38$ 76 114 152 190 K/W $R_{\rm th~G/U} = 750$ 560 410 330 280 K/W


 $R_{th~B/U}^{-1}$ ist von der Befestigungsart abhängig; für Leiterplatten von 1,5 mm Stärke mit \geq 40 μ m Kupfer gilt

R_{th B/U} = 70 K/W bei Montage ähnlich Skizze auf der zweiten Seite dieses Datenblattes

 $R_{\rm th~B/U}$ = 55 K/W bei Montage auf Leiterplatte mit 1 cm² Kupferbelag pro Anschluß

 $R_{\rm th~B/U} = 45$ K/W bei Montage auf Leiterplatte mit 2,25 cm² Kupferbelag pro Anschluß

