MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

Silicon Èpicap Diodes

... designed for general frequency control and tuning applications; providing solid-state reliability in replacement of mechanical tuning methods.

- High Q with Guaranteed Minimum Values at VHF Frequencies
- Controlled and Uniform Tuning Ratio
- Available in Surface Mount Package

MAXIMUM RATINGS

		MV409	MMBV409L		
Rating	Symbol	Value		Unit	
Reverse Voltage	VR	20		Volts	
Forward Current	lF	200		mA	
Forward Power Dissipation @ T _A = 25°C Derate above 25°C	PD	280 2.8	225* 1.8	mW mW/°C	
Junction Temperature	TJ	+ 125		°C	
Storage Temperature Range	T _{stg}	-65 to +150		°C	

^{*}FR5 Board 1.0 x 0.75 x 0.62 in.

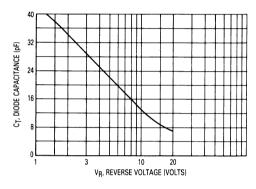
DEVICE MARKING

MMBV409L = X5

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

Characteristic — All Types	Symbol	Min	Тур	Max	Unit
Reverse Breakdown Voltage (I _R = 10 μAdc)	V _{(BR)R}	20	_	_	Vdc
Reverse Voltage Leakage Current (V _R = 15 Vdc)	IR	_	_	0.1	μAdc
Diode Capacitance Temperature Coefficient (V _R = 3.0 Vdc, f = 1.0 MHz)	тсс	_	300	_	ppm/°C

MMBV409L MV409


VOLTAGE VARIABLE CAPACITANCE DIODES 26-32 pF

•		Diode Capaci 3 Vdc, f = pF		Q, Figure of Merit VR = 3 Vdc f = 50 MHz (Note 1)	f = 1	tance Ratio /C ₈ MHz te 2)
Device	Min	Nom	Max	Min	Min	Max
MMBV409L/MV409	26	29	32	200	1.5	1.9

- NOTES ON TESTING AND SPECIFICATIONS
 (1) Q is calculated by taking the G and C readings of an admittance bridge, such as Boonton Electronics Model 33AS8, at the specified frequency and substituting in the following equation:
 - $Q = \frac{2\pi fC}{}$ G
- (2) CR is the ratio of Ct measured at 3 Vdc divided by Ct measured at 8 Vdc.

Q, FIGURE OF MERIT (X 1000) 0.7 0.5 0.3 10 VR, REVERSE VOLTAGE VOLTS

Figure 1. Diode Capacitance

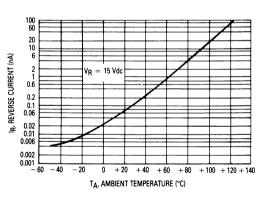


Figure 2. Figure of Merit

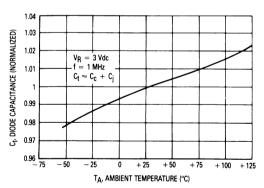


Figure 3. Leakage Current

Figure 4. Diode Capacitance

MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

Silicon Epicap Diode

... designed for FM tuning, general frequency control and tuning, or any top-of-the-line application requiring back-to-back diode configuration for minimum signal distortion and detuning. This device is supplied in the SOT-23 plastic package for high volume, pick and place assembly requirements.

- High Figure of Merit Q = 150 (Typ) @ $V_R = 2$ Vdc, f = 50 MHz
- Guaranteed Capacitance Range
- Dual Diodes Save Space and Reduce Cost
- Surface Mount Package
- Available in 8 mm Tape and Reel
- Monolithic Chip Provides Improved Matching Guaranteed ±1% (Max) Over Specified Tuning Range

MMBV432L

DUAL VOLTAGE-VARIABLE CAPACITANCE DIODE

CASE 318-07, STYLE 9 (TO-236AB)

MAXIMUM RATINGS (Each Diode)

Rating	Symbol	Value	Unit
Reverse Voltage	VR	14	Volts
Forward Current	lF	200	mA
Total Power Dissipation (a T _A = 25°C Derate above 25°C	PD	350 2.8	mW mW/°C
Junction Temperature	TJ	+ 125	°C
Storage Temperature Range	T _{stg}	-55 to +125	°C

DEVICE MARKING

MMBV432L = M4B

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Breakdown Voltage ($I_R = 10 \mu Adc$)	V _{(BR)R}	14	_	_	Vdc
Reverse Voltage Leakage Current (VR = 9 Vdc)	IR	_	-	100	nAdc
Diode Capacitance (V _R = 2 Vdc, f = 1 MHz)	C _T	43	_	48.1	pF
Capacitance Ratio C2/C8 (f = 1 MHz)	CR	1.5	_	2	_
Figure of Merit* (V _R = 2 Vdc, f = 50 MHz)	Q	100	150	_	_

* Q =
$$\frac{1}{2 \pi f C_T R_S}$$

6

TYPICAL CHARACTERISTICS

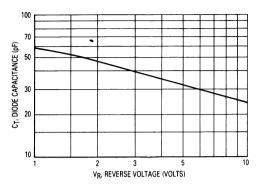


Figure 1. Diode Capacitance

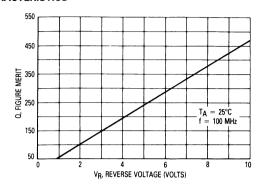


Figure 2. Figure of Merit versus Voltage

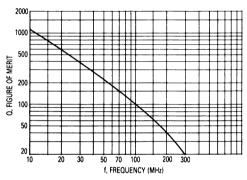


Figure 3. Figure of Merit versus Frequency

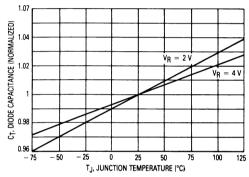


Figure 4. Diode Capacitance versus Temperature

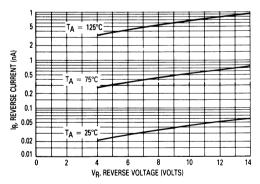


Figure 5. Reverse Current versus Reverse Voltage

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

Silicon Epicap Diode

... designed for FM tuning, general frequency control and tuning, or any top-of-the-line application requiring back-to-back diode configuration for minimum signal distortion and detuning. This device is supplied in the SOT-23 plastic package for high volume, pick and place assembly requirements.

- High Figure of Merit Q = 350 (Typ) @ V_R = 3.0 Vdc, f = 50 MHz
- Guaranteed Capacitance Range
- Dual Diodes Save Space and Reduce Cost
- Surface Mount Package
- Available in 8 mm Tape and Reel
- Monolithic Chip Provides Improved Matching
- Hyper Abrupt Junction Process Provides High Tuning Ratio

MMBV609L

DUAL VOLTAGE-VARIABLE CAPACITANCE DIODE

CASE 318-07, STYLE 9 (TO-236AB) SOT-23

DEVICE MARKING = 5L

MAXIMUM RATINGS (Each Diode)

Rating	Symbol	Value	Unit
Reverse Voltage	VR	20	Volts
Forward Current	lF	100	mA
Total Power Dissipation @ T _A = 25°C Derate above 25°C	PD	225 1.8	mW mW/°C
Junction Temperature	TJ	+ 125	°C
Storage Temperature Range	T _{stg}	-55 to +125	°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Breakdown Voltage (I _R = 10 μAdc)	V _{(BR)R}	20	-	_	Vdc
Reverse Voltage Leakage Current (V _R = 15 Vdc)	l _R	_	_	10	nAdc
Diode Capacitance (V _R = 3.0 Vdc, f = 1.0 MHz)	CT	26	_	32	pF
Capacitance Ratio C3/C8 (f = 1.0 MHz)	CR	1.8	_	2.4	_
Figure of Merit (V _R = 3.0 Vdc, f = 50 MHz)	Q	250	350	_	_

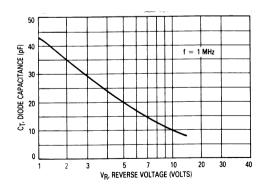


Figure 1. Diode Capacitance

MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

Silicon Epicap Diode

- ... designed for 900 MHz frequency control and tuning applications; providing solidstate reliability in replacement of mechanical tuning methods.
- Controlled and Uniform Tuning Ratio
- Available in Surface Mount Package
- · Available in 8 mm Tape and Reel

DEVICE MARKING: 5K MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Reverse Voltage	VR	20	Volts
Forward Current	lF	20	mA
Forward Power Dissipation @ T _A = 25°C Derate above 25°C	PD	225* 1.8	mW mW/°C
Junction Temperature	TJ	+ 125	°C
Storage Temperature Range	T _{stg}	- 55 to + 125	°C

^{*}FR5 Board 1.0 x 0.75 x 0.62 in.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

Characteristic — All Types	Symbol	Min	Тур	Max	Unit
Reverse Breakdown Voltage (I _R = 10 μAdc)	V _{(BR)R}	20	_	_	Vdc
Reverse Voltage Leakage Current (V _R = 15 Vdc)	IR	_	_	50	nAdc

VOLTAGE VARIABLE CAPACITANCE DIODE 4.5-6.1 pF

CASE 318-07, STYLE 8 TO-236AB SOT-23

		C _t , Diode Capacitance V _R = 2.0 Vdc, f = 1.0 MHz pF		Q, Figure of Merit V _R = 3.0 Vdc f = 50 MHz (Note 1)	f = 1.	tance Ratio /C ₈ 0 MHz te 2)
Device	Min	Тур	Max	Min	Min	Max
MMBV809L	4.5	5.3	6.1	300	1.8	2.6

NOTES ON TESTING AND SPECIFICATIONS

(1) Q is calculated by taking the G and C readings of an admittance bridge, such as Boonton Electronics Model 33AS8, at the specified frequency and substituting in the following equation:

 $\alpha = \frac{2\pi i C}{C}$

(2) C_R is the ratio of C_t measured at 2.0 Vdc divided by C_t measured at 8.0 Vdc.

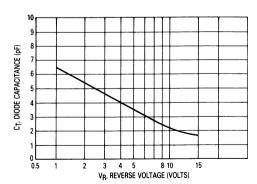


Figure 1. Diode Capacitance