


Anwendung: Ultra-schneller Foto-Detektor

Besondere Merkmale:

- Kurze Ansprechzeiten
- Geringe Sperrschichtkapazität
- Hohe Fotoempfindlichkeit
- Für Fotodioden- und Fotoelement-Betrieb
- Hermetisches Gehäuse
- Großer Öffnungswinkel
- Für die Bereiche der sichtbaren und der nahen infraroten Strahlung geeignet
- Zur Kopplung an Glasfasern geeignet

Vorläufige technische Daten

Abmessungen in mm

Strahlungsempfindliche Fläche $A=7.5~\mathrm{mm^2}$ Öffnungswinkel $\alpha=100^\circ$ Minuspol/Kathode mit Gehäuse verbunden

≈ JEDEC TO 56 Gewicht max. 1,0 g

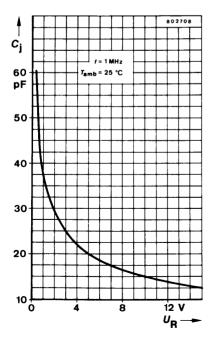
Sperrspannung	u_{R}	50	V
Verlustleistung $T_{\text{amb}} \le 25^{\circ}\text{C}$	P_{\bigvee}	300	mW
Sperrschichttemperatur	$ au_{ m j}$	100	°C
Umgebungstemperaturbereich	T _{amb}	-25+100	°C

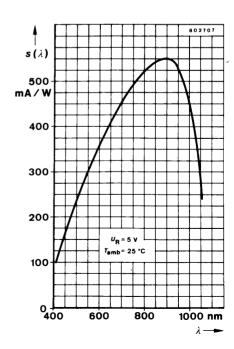
S 153 P

Wärmewiderstand		Min.	Тур.	Max.	
Sperrschicht-Umgebung	R_{thJA}			250	K/W
Optische und elektrische Kenngrößen 7 _{amb} = 25°C					
Fotoelement-Betrieb $(U_{R}=0)$					
Leerlaufspannung $E_A = 1 \text{ klx}^1$)	U_{o}		350		mV
Temperaturkoeffizient von U_{O} $E_{A} = 1 \text{ klx}^{1}$)	τκ _{Uo}		-2,6		mV/K
Kurzschlußstrom $E_{A} = 1 \text{ klx}^{1}$), $R_{L} = 100 \Omega$	/ _k		70		μΑ
Kurzschlußempfindlichkeit	s _k		70		nA/lx
Temperaturkoeffizient von I_k $E_A = 1 \text{ kix}^1$), $R_L = 100 \Omega$	TK _{lk}		0,18		%/K
Sperrschichtkapazität $U_{R} = 0, f = 1 \text{ MHz}, E = 0$	c _j		75		pF
- otodioden-Betrieb					
Durchbruchspannung $I_{rO} = 100 \mu A, E = 0$	U _(BR) *)	50			v
Dunkelsperrstrom $U_{R} = 10 \text{ V}, E = 0$	/ _{ro} *)		2	30	nA
Hellsperrstrom $U_{R} = 5 \text{ V}, E_{A} = 1 \text{ kix}^{1}$	/ _{ra} *)	50	70		μΑ
Absolute Empfindlichkeit $U_{R} = 5 \text{ V}$	s		70 ⁻		nA/lx
Absolute spektrale Empfindlichkeit $U_{\rm R} = 5 \text{V}, \lambda = 900 \text{nm}$	s(λ)		0,6		A/W
Sperrschichtkapazität $U_{\mathbf{R}} = 3 \text{ V}, f = 1 \text{ MHz}, E = 0$	c _i		25	40	pF
Rauschäquivalente Strahlungsleistung (NEP)	P _n		10 ⁻¹⁴		WHz ^{-½}

 $^{^{1})}$ Normlichtart A (DIN 5033/IEC 306-1) *) AQL = 0,65 %

Schaltzeiten

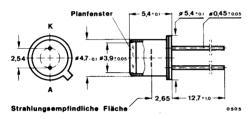

$$U_{\mathsf{R}}$$
= 10 V, R_{L} = 1 k Ω


Einschaltzeit $t_{
m on}$ 50 ns Ausschaltzeit $t_{
m off}$ 50 ns

Fotoelement- und Fotodioden-Betrieb

Wellenlänge der maximalen Empfindlichkeit
Bereich der spektralen Empfindlichkeit (50%)

 $\begin{array}{ccc} \lambda_p & 900 & \text{nm} \\ \lambda_{0,5} & 500 \dots 1000 & \text{nm} \end{array}$


Anwendung: Schneller Foto-Detektor

Besondere Merkmale:

- Kurze Ansprechzeiten
- Geringe Sperrschichtkapazität
- Hohe Fotoempfindlichkeit
- Für Bereiche der sichtbaren und der nahen infraroten Strahlung geeignet

Vorläufige technische Daten

Abmessungen im mm

Strahlungsempfindliche Fläche $A=0.25\,\mathrm{mm^2}$ Öffnungswinkel $\alpha=70^\circ$ Minuspol/Kathode mit Gehäuse verbunden

> ≈ 18 A 2 DIN 41 876 ≈ JEDEC TO 18 Gewicht max. 0,5 g

Absolute Grenzdaten

Sperrspannung	u_{R}	32	V
Verlustleistung $\tau_{\text{amb}} \leq 25^{\circ}\text{C}$	PV	150	mW
Sperrschichttemperatur	$ au_{\mathbf{j}}$	100	°C
Lagerungstemperaturbereich	$ au_{ extsf{stg}}$	-25+100	°C
Maximal zulässige Löttemperatur t ≦3s	T_{sd}^{-1})	245	°C

Wä	rma	wid	aret	hand

Sperrschicht-Umgebung

	Min.	Тур.	Max.	
R_{thJA}			350	K/W

¹⁾ Abstand von der Aufsetzkante ≥ 2 mm

S 168 P

	Max.	in. Typ.	Min.		Optische und elektrische Kenngrößen T _{amb} = 25°C
					Fotodioden-Betrieb
v		32	32	U _(BR)	Durchbruchspannung $I_{R} = 100 \ \mu A, E = 0$
nA	1			I _{ro}	Dunkelsperrstrom $U_{R} = 5 \text{ V}, E = 0$
μΑ		:,0	2,0	I _{ra}	Hellsperrstrom $U_{\mathbf{R}} = 5 \text{ V}, E_{\mathbf{A}} = 1 \text{ klx}^1)$
A/W		,5	0,5	s(λ)	Absolute spektrale Empfindlichkeit $U_{\rm R}=5~{\rm V},~\lambda=850~{\rm nm}$
pF	5			c _i	Sperrschichtkapazität $U_{R} = 0 \text{ V}, f = 1 \text{ MHz}$
nm		900		$\lambda_{\mathbf{p}}$	Wellenlänge der maximalen Empfindlichkeit
nm	00	500100		λ _{0,5}	Bereich der spektralen Empfindlichkeit (50 %)

$$U_{\mathsf{R}} = 5 \, \mathsf{V}, R_{\mathsf{L}} = 1 \, \mathsf{k}\Omega$$

Anstiegszeit Abfallzeit

10

10

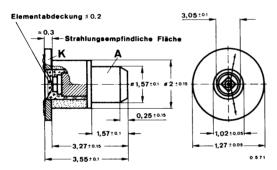
ns ns

¹⁾ Normlichtart A (DIN 5033/IEC 306-1)

Silizium-Foto-Lawinendiode

Anwendung: Breitband-Detektor für Strahlungsmodulation schneller Signale, z. B. von Lasern und GaAs-Lumineszenzdioden. Detektor für die Technik der optischen Nachrichtenübertragung

z. B. über Glasfaserleitungen.


Besondere Merkmale:

- Hochempfindlicher, rauscharmer Foto-Detektor für Strahlungsdemodulation
- Verstärkung größer als 200

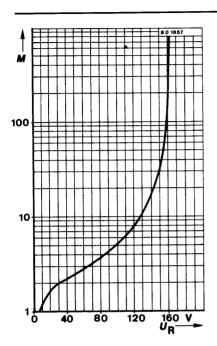
- Verstärkungsbandbreiteprodukt größer als 200 GHz
- Mikrowellengehäuse

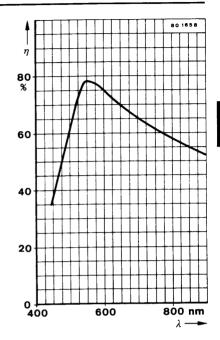
Vorläufige technische Daten

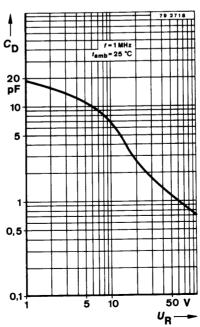
Abmessungen in mm

Durchmesser der strahlungsempfindlichen Fläche $\varnothing=0.2~\mathrm{mm}$ Öffnungswinkel $\alpha=90^\circ$

Verlustleistung			
$T_{\text{amb}} = 25 ^{\circ}\text{C}$	P_{V}	100	mW
Sperrschichttemperatur	$ au_{j}$	125	°C
Umgebungstemperaturbereich	<i>T</i> _{amb}	-65+100	°C


S 171 P

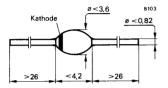

ptische und elektrische Kenngrößen 7 _{amb} = 25°C		Min.	Тур.	Max.	
Bereich der spektralen Empfindlichkeit (50%)	λ _{0,5}		45095	ס	nm
Dunkelsperrstrom M^1) = 100, $E = 0$	I _{ro}		1	5	nA
Durchbruchspannung $I_{\mathbf{R}} = 10 \ \mu \mathbf{A}, E = 0$	$U_{(BR)}$	140	170	200	v
Temperaturkoeffizient von $U_{(BR)}$	TK _{UBR}		0,20		%/°C
Wirkungsgrad $\lambda = 910 \text{ nm}$	η	20			%
Verstärkungsbandbreiteprodukt	G _B ²)	200			GHz
Kapazität $U_{R} = 100 \text{ V}, f = 1 \text{ MHz}$	c_{D}		0,85	1,0	pF
Serienwiderstand $f = 1 \text{ MHz}$	r _s			50	Ω
Anstiegszeit $R_{\rm L}=50~\Omega$	t _r		200		ps


Der spannungsabhängige Verstärkungsfaktor M ist definiert als Verhältnis des Photostromes Iph bei Betriebssperrspannung zu dem Photostrom bei 10 V Sperrspannung.

²) Das Verstärkungsbandbreiteprodukt ist die Verstärkung M multipliziert mit der Meßfrequenz, wenn die Diode mit Sperrspannung so betrieben wird, daß bei der gegebenen Meßfrequenz der maximale Verstärkungsfaktor vorhanden ist.

S 171 P

Silizium-Mesa-Diode

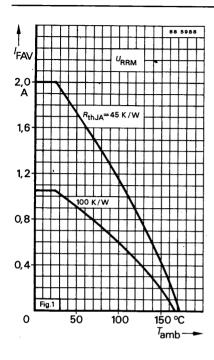

Anwendung: Gleichrichter

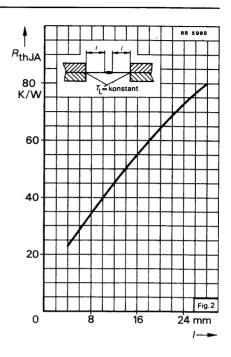
Besondere Merkmale:

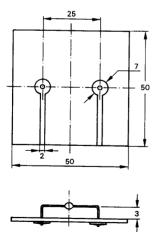
Glaspassivierte Sperrschicht

Hermetisch dichtes Gehäuse

Abmessungen in mm

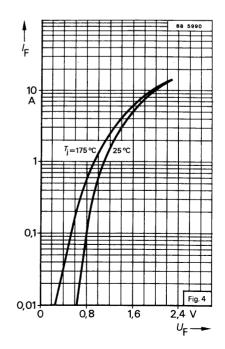


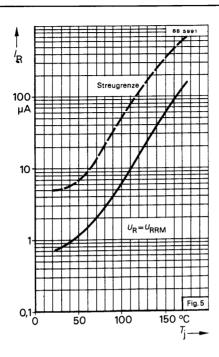

Sinterglasgehäuse SOD 57 Gewicht max. 0,15 g


Bestempelung: Klartext

			S 180 D		S 181 D	
Periodische Spitzensperrspannung		U_{RRM}	60		120	٧
Sperrspannung		U_{R}	50		100	٧
Stoßdurchlaßstrom $t_p = 10 \text{ ms}$		I _{FSM}		50		Α
Durchlaßstrom, Mittelwert	Fig. 1, 2	I _{FAV}		2		Α
Sperrschichttemperatur		$T_{\rm j}$		175		°C
Lagerungstemperaturbereich		T_{stg}	- 6	55+ 175		°C
Maximale Wärmewiderstände						
$I = 10$ mm, $T_L = \text{konstant}$	Fig. 2	R_{thJA}		45		K/W
auf Leiterplatte im Raster 25 mm	Fig. 3	R_{thJA}		100		K/W
Kenngrößen			Min.	Тур.	Max.	
$T_{\rm j} = 25$ °C, falls nicht anders angeg	jeben					
Durchlaßspannung						
/ _F = 1 A		U_{F}			1,1	V
Sperrstrom		,			5	μА
$U_{\rm R}$ $U_{\rm R}$, $T_{\rm j} = 100 {\rm ^{\circ}C}$		I _R I _R			50	μA

S 180 D · S 181 D





88 2150

S 180 D · S 181 D

Anwendung: Breitband-Detektor für Strahlungsmodulation schneller Signale, z.B. von Lasern und GaAs-Lumineszenzdioden. Detektor für die Technik der optischen Nachrichtenübertragung z. B. über Glasfaserleitungen.

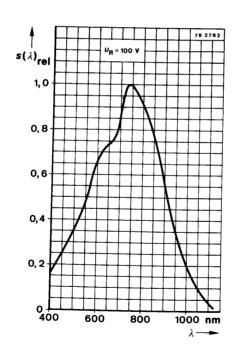
Besondere Merkmale:

- Hochempfindlicher, rauscharmer Foto-Detektor für Strahlungsdemodulation
- Anstiegszeit 200 ps

- Als Laserregeldiode geeignet
- Mikrowellengehäuse

Vorläufige technische Daten

Abmessungen in mm

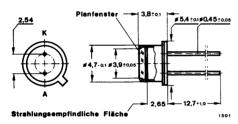


Durchmesser der strahlungsempfindlichen Fläche $\emptyset = 0.2 \text{ mm}$ Öffnungswinkel $\alpha = 90^{\circ}$

Sperrspannung	u_{R}	110	٧
Verlustleistung T _{amb} = 25°C	PV	100	mW
Sperrschichttemperatur	$ au_{\mathbf{j}}$	125	°C
Lagerungstemperaturbereich	$ au_{ ext{stg}}$	−65+1 0 0	°C

S 181 P

T _{amb} = 25°C				
Durchbruchspannung $I_{R} = 100 \mu A, E = 0$	U _(BR)	110		v
Dunkelsperrstrom $U_{R} = 100 \text{ V}, E = 0$	l _{ro}		1 5	nA
Absolute spektrale Empfindlichkeit $U_{\rm R} = 100 {\rm V}, \; \lambda = 800 {\rm nm}$	$s(\lambda)$	0,3	6	A/W
Wellenlänge der maximalen Empfindlichkeit	$\lambda_{\mathbf{p}}$	73	0	nm
Bereich der spektralen Empfindlichkeit (50%)	λ _{0,5}	550	.910	nm
Sperrschichtkapazität $U_{R} = 0 \text{ V}, f = 1 \text{ MHz}$	C _i	0,8	5 1,5	pF
Anstiegszeit	,	·	,-	μ.
U_{R} = 100 V, R_{L} = 50 k Ω	t _r	200)	ps


Anwendung: Ultra-schneller Foto-Detektor

Besondere Merkmale:

- Kurze Ansprechzeiten bei kleinen Spannungen
- Hohe Fotoempfindlichkeit
- Für Fotodioden- und Fotoelement-Betrieb
- Hermetisches Gehäuse mit Planfenster
- Für die Bereiche der sichtbaren und der nahen infraroten Strahlung geeignet

Vorläufige technische Daten

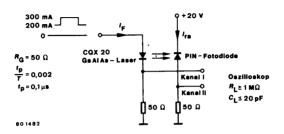
Abmessungen in mm

Strahlungsempfindliche Fläche $A = 0.64 \text{ mm}^2$ Öffnungswinkel $\alpha = 70^{\circ}$ Minuspol/Kathode mit Gehäuse verbunden

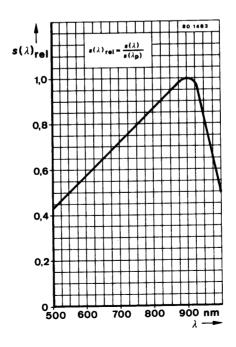
> ≈ 18 A 2 DIN 41 876 ≈ JEDEC TO 18 Gewicht max. 0,5 g

Sperrspannung
Verlustleistung
T _{amb} ≤ 25°C
Sperrschichttemperatur
Umgebungstemperaturbereich

u_{R}	50	٧
PV	180	mW
$ au_{i}$	100	°C
T _{amb}	-25+100	°C


Wärmewiderstand		Min.	Тур.	Max.	
Sperrschicht-Umgebung	R _{thJA}			400	K/W

S 191 P


Optische und elektrische Kenngrößen T _{amb} = 25°C		Min.	Тур.	Max.	
Fotoelement-Betrieb $(U_{R}=0)$					
Leerlaufspannung E _A = 1 klx¹)	<i>U</i> o*)		380		mV
Temperaturkoeffizient von U_0 $E_A = 1 \text{ klx}^1$)	τκ _{Uo}		-2		mV/K
Kurzschlußstrom $E_A = 1 \text{ klx}^1$), $R_L = 100 \Omega$	/ _k *)	45	70		μΑ
Kurzschlußempfindlichkeit	s _k	45	70		nA/lx
Temperaturkoeffizient von $I_{\mathbf{k}}$ $E_{\mathbf{A}} = 1 \mathrm{kix}^{1}$), $R_{\mathbf{L}} = 100 \Omega$	τκ _{IK}		0,1		%/K
Sperrschichtkapazität $U_{R} = 0$, $f = 1$ MHz, $E = 0$	c _j		10		pF
otodioden-Betrieb					
Durchbruchspannung $I_{ro} = 100 \mu A, E = 0$	υ _(BR) *)	50	80		v
Dunkelsperrstrom $U_{R} = 20 \text{ V}, E = 0$	/ _{ro} *)		1	5	nA
Hellsperrstrom $U_{\rm R}=5$ V, $E_{\rm e}=1$ mW/cm², $R_{\rm L}=100\Omega$	/ _{ra} *)	3	6		μΑ
Absolute spektrale Empfindlichkeit $U_{\rm R}=$ 20 V, $\lambda=$ 900 nm	s (λ)		0,5		A/W
Sperrschichtkapazität $f = 1 \text{ MHz}, \ U_{\text{R}} = 5 \text{ V}$ $U_{\text{R}} = 20 \text{ V}$	c _j c _j		6 4		pF pF
chaltzeiten $U_{\rm R}=20$ V, $R_{\rm L}=50~\Omega$, siehe Meßschaltung					
Anstiegszeit	t _r		7		ns
Abfallzeit	t _f		7		

^{*)} AQL = 0,65% 1) Normlichtart A (DIN 5033/IEC 306-1)

Fotoelement- und Fotodioden-Betrieb		Min.	Тур.	Max.	
Wellenlänge der maximalen Empfindlichkeit	$\lambda_{\mathbf{p}}$		900		nm
Bereich der spektralen Empfindlichkeit (50%)	$\lambda_{0,5}$;	550100	00	nm

Meßschaltung

^{*)} AQL = 0,65%

¹⁾ Normlichtart A (DIN 5033/IEC 306-1)