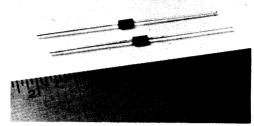
SCHOTTKY

VSK120, VSK130

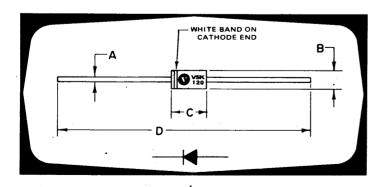

1 AMP SCHOTTKY BARRIER RECTIFIERS

20 VOLT AND 30 VOLT VRRM

.450 VOLT AND .550 VOLT v_F AT $i_F = 1.0$ AMP

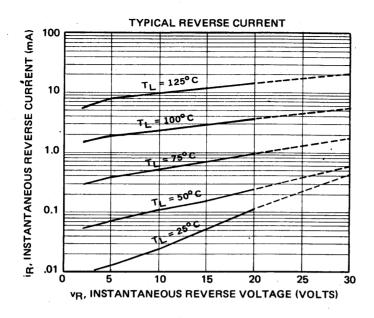
VERY FAST RECOVERY TIME

MINIMUM SIZED, LOW COST EPOXY ENCAPSULATION



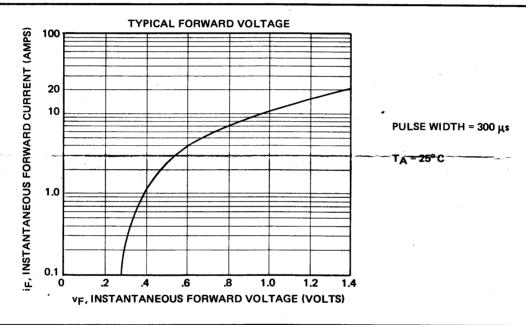
MAXIMUM RATINGS (At T _A = 25°C unless otherwise noted)	SYMBOL	V\$K120	VSK130	UNITS
DC Blocking Voltage	V _{RM}			
Working Peak Reverse Voltage	V _{RWM}	20	30	Volts
Peak Repetitive Reverse Voltage	V _{RRM}			
RMS Reverse Voltage	V _{R(RMS)}	14	21	Volts
Average Rectified Forward Current (Fig. 5 & 6)	lo	1	.0	Amps
Ambient Temp. @ Rated V _{RM} , R _{eJA} ≤50° C/W	TA	85	80	°C
Peak Surge Current (non-rep), 300 µs Pulse Width (Fig.4)	IFSM	- 100		Amps
Peak Surge Current (non-rep), ½ cycle, 60Hz (Fig.4)	I _{FSM}		40	Amps
Operating Junction Temperature	TJ	-65 to	+125*	°C
Storage Temperature	T _{STG}	-65 to	+150	°C

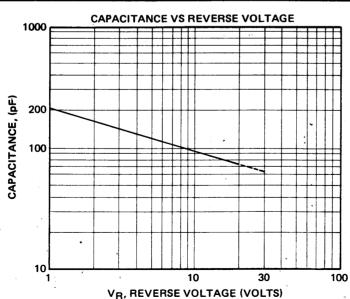
V_{RM} ≤ U.1 V_{RM} Max, R_{OJA} ≤ 35° C/W


ELECTRICAL CHARACTERIS		SYMBOL	VSK120	VSK130	UNITS
Maximum Instantaneous Forwa	rd Voltage Drop (1)	٧ _F			
See Fig. 2 for Typical v _F	i _F =0.1 Amp		.320	.330	
	i _F =1.0 Amp		.450	.550	Volts
	i _F =3.0 Amp		.750	.875	
Maximum Instantaneous Revers	se Current				
at Rated V _{RM} (1)		i _R			
See Fig. 1 for Typical iR	T _L =25° C		1.0		
	T _L =100° C		10.0		mA

(1) Pulse Test: Pulse Width = 300 µs, Duty Cycle = 2%

LTR.	INCHES	MILLIMETERS
Α	.030034 Dia.	,76-,86 Dia.
В	.10107 Dia.	2,54-2,72 Dia.
С	.185—.205	4,70-5,21
D	2.40	60,96



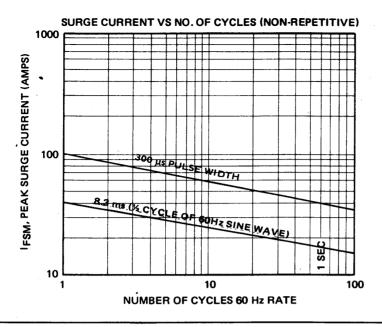

---- VSK120 --- VSK130

PULSE WIDTH = 300 µs

FIGURE 1

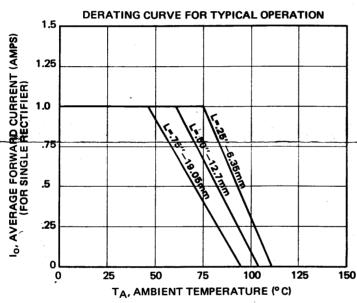
FIGURE 2

---- VSK120


VSK130

 $T_A = 25^{\circ} C$

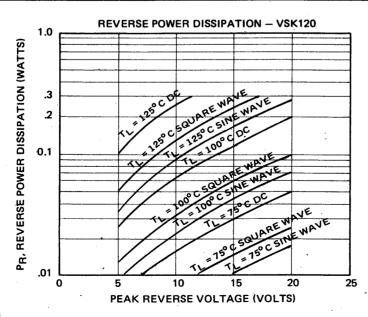
TEST FREQ. = 100 KHz


The current flow in a Schottky barrier rectifier is due to majority carrier conduction and is not affected by reverse recovery transients due to stored charge and minority carrier injection as in conventional PN diodes.

The Schottky barrier rectifier may be considered for purposes of circuit analysis, as an ideal diode in parallel with a variable capacitance equal in value to the junction capacitance. See Figure 3.

T_A = 25° C

FIGURE 4

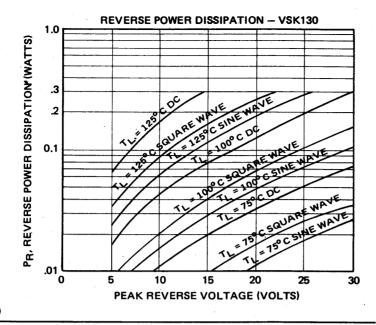


1/16" Glass **Epoxy PC Board** .25''-6.35mm 2 oz. Copper Dia. Pads

CONDITIONS:

- · VSK120 RECTIFIER
- FULL WAVE CENTER TAP OPERATION.
- · RECT. PEAK REVERSE **VOLTAGE = 20V**
- · FILTER CAPACITOR = 4 µF.
- 20 KHz SQUARE WAVE

FIGURE 5

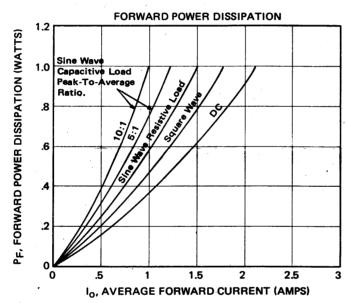


REVERSE POWER MULTIPLIES 1.32x FOR EACH 5°C TEMP. INCREASE

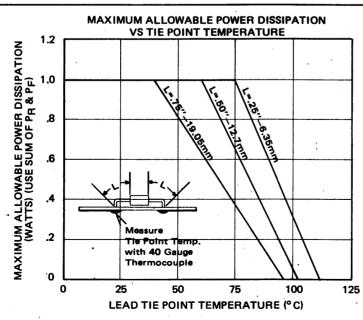
USE THIS MULTIPLIER FOR INTERPOLATION BETWEEN CURVES SHOWN HERE.

USE 75°C CURVES FOR ALL LEAD TEMP. BELOW 75°C.

FIGURE 6 (A)


REVERSE POWER MULTIPLIES

1.32× FOR EACH 5° C TEMP, INCREASE


USE THIS MULTIPLIER FOR INTERPOLATION BETWEEN CURVES SHOWN HERE.

USE 75°C CURVES FOR ALL LEAD TEMP. BELOW 75°C.

FIGURE 6 (B)

FIGURE 6 (C)

Thermal Considerations:

- 1. The derating curve of figure 5 may be used for initial design work.
- Use the curves of figure 6 to study the voltage / current / temperature parameters. These curves are helpful in determining the rectifier capability when connected to a tie point whose temperature is influenced by other heat producing components. To use these curves, add the reverse power dissipation from figure 6 (A) or (B) to the forward power dissipation from figure 6 (C) then go to figure 6 (D) to find the maximum allowable tie point temperature.
- 3. The heat sink design (tie point) must be designed to keep the temperature at this point below that shown on the figure 6 (D) curve. Thermal runaway is entirely possible on marginal designs due to the inherently large reverse leakage of Schottky barrier rectifiers and the fact that reverse power multiplies about 1.32 times for each 5° C of temperature increase.
- 4. The curves of figure 6 (D) were based on full rated reverse bias voltage. Slightly higher tie point temperatures can be tolerated at lower voltages. We recommend that all designs be verified at an ambient temperature at least 10° C higher than the maximum at which the equipment will ever have to operate.
- If the application is such that DC reverse bias is applied nearly 100% of the time, all temperature points on curve 6 (D) should be reduced 13° C.
- These thermal resistances apply: Re JL (measured 1/32" from epoxy) = 12° C/W and the lead = 50° C/W per inch when equal heatsinking is applied to each lead.

VARO SEMICONDUCTOR, INC. RESERVES THE RIGHT TO MAKE CHANGES IN THESE SPECIFICATIONS AT ANY TIME AND WITHOUT NOTICE, IN ORDER TO SUPPLY THE BEST POSSIBLE PRODUCT.

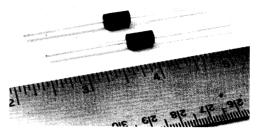
©1975, VARO SEMICONDUCTOR, INC. PRINTED IN U.S.A.

FIGURE 6 (D)

VSK320, VSK330

3 AMP SCHOTTKY BARRIER RECTIFIERS

INDEG

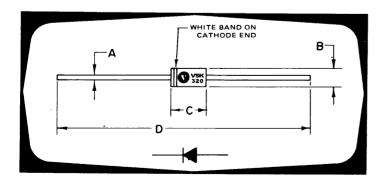

20 VOLT AND 30 VOLT V_{RRM}

INDEG Industrie Elektronia VOLT AND .500 VOLT VF AT IF = 3.0 AMP Gesellschaft für Beratung und Vertrieb mb. W

Technisches Büro
7032 SINDELFINGEN 1, Vaihinger Str. 21
Telefon (07031) <875052 >

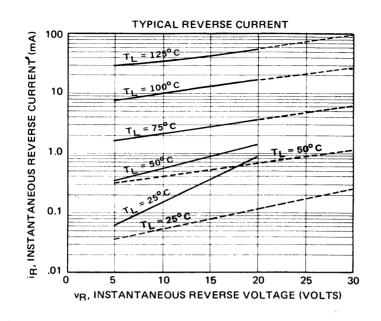
VERY FAST RECOVERY TIME

MINIMUM SIZED, LOW COST EPOXY ENCAPSULATION



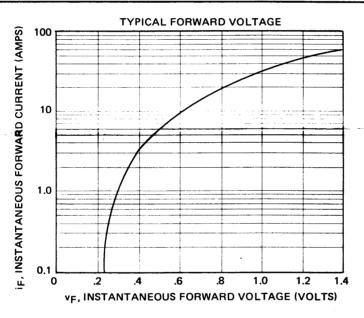
MAXIMUM RATINGS (At T _A = 25°C unless otherwise noted)	SYMBOL	VSK320	VSK330	UNITS
DC Blocking Voltage Working Peak Reverse Voltage	V _{RM} V _{RWM}	20	30	Volts
Peak Repetitive Reverse Voltage	V _{RRM}	20	30	Voits
RMS Reverse Voltage	V _{R(RMS)}	14	21	Volts
Average Rectified Forward Current (Fig. 5 & 6)	l _o	3.	.0	Amps
Ambient Temp. @ Rated V _{RM} , R _{eJA} ≤ 24° C/W	TA	80	75	°C
Peak Surge Current (non-rep), 300 µs Pulse Width (Fig.4)	IFSM	, 25	50	Amps
Peak Surge Current (non-rep), ½ cycle, 60Hz (Fig.4)	I _{FSM}	15	50	Amps
Operating Junction Temperature	Tj	-65 to	+125*	°C
Storage Temperature	T _{STG}	−65 to	+150	°C

 $^*V_{RM} \le 0.1 V_{RM} Max$, $R_{\Theta JA} \le 32^{\circ} C/W$


ELECTRICAL CHARACTERISTICS (At T _A = 25° C unless otherwise noted) Maximum Instantaneous Forward Voltage Drop (1)		SYMBOL	VSK320	VSK330	UNITS
		٧F			\neg
See Fig. 2 for Typical v _F	iF= 1.0 Amp		.370	.380	
	iF= 3.0 Amps		.475	.500	Volts
•	iF=10.0 Amps		.850	.900	
Maximum Instantaneous Rever	se Current				
at Rated V _{RM} (1)		iR			
See Fig. 1 for Typical in	T _L =25° C		3.	0	
	T _L =100° C		30.	0	mA

(1) Pulse Test: Pulse Width = 300 µs, Duty Cycle = 2%

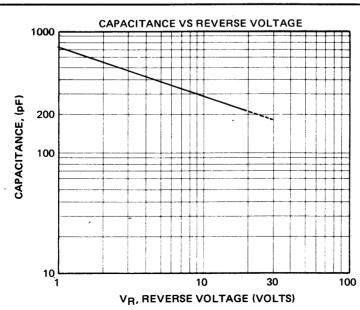
LTR.	INCHES	MILLIMETERS
Α	.048052 Dia.	1,22-1,32 Dia.
В	.20 Dia.	5,08 Dia.
С	.38	9,65
D	2.75	69,85



---- VSK320 ---- VSK330

PULSE WIDTH = 300 дs

T_L = LEAD TEMP. MEASURED .03" — .79mm FROM RECT. BODY WITH 40 GAUGE THERMOCOUPLE.

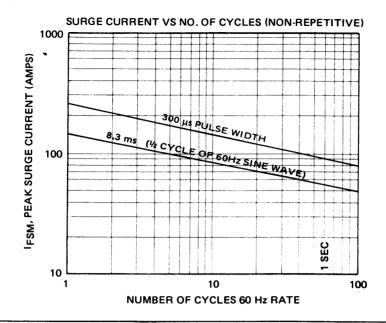

FIGURE 1

PULSE WIDTH = 300 µs

 $T_A = 25^{\circ} C$

FIGURE 2

---- VSK320


---- VSK330

 $T_A = 25^{\circ} C$

TEST FREQ. = 100 KHz

The current flow in a Schottky barrier rectifier is due to majority carrier conduction and is not affected by reverse recovery transients due to stored charge and minority carrier injection as in conventional PN diodes.

The Schottky barrier rectifier may be considered for purposes of circuit analysis, as an ideal diode in parallel with a variable capacitance equal in value to the junction capacitance. See Figure 3.

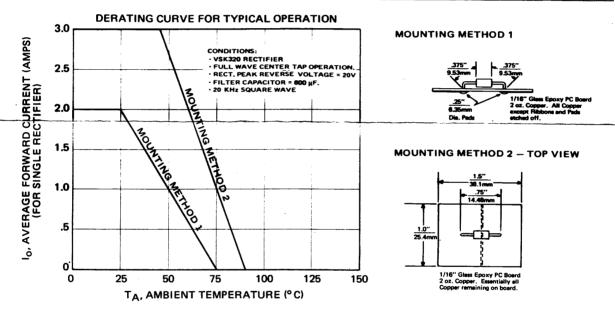

T_A = 25° C

FIGURE 4

FIGURE 5

1.0

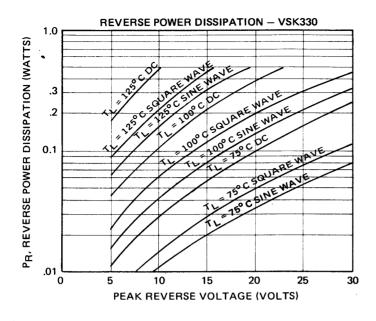
ا 01. 0

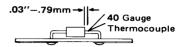
20

25

10

PEAK REVERSE VOLTAGE (VOLTS)

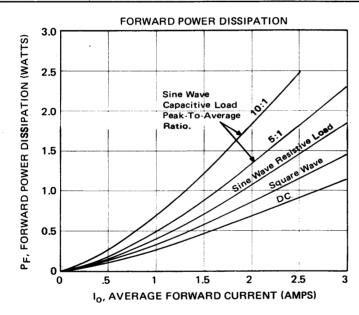

REVERSE POWER DISSIPATION - VSK320


REVERSE POWER MULTIPLIES

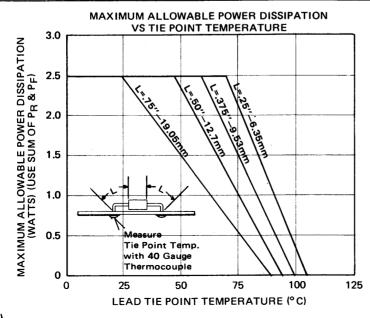
1.32× FOR EACH 5°C TEMP. INCREASE

USE THIS MULTIPLIER FOR INTERPOLATION BETWEEN CURVES SHOWN HERE.

USE 75°C CURVES FOR ALL LEAD TEMP. BELOW 75°C.


REVERSE POWER MULTIPLIES

1.32× FOR EACH 5° C TEMP, INCREASE


USE THIS MULTIPLIER FOR INTERPOLATION BETWEEN CURVES SHOWN HERE.

USE 75°C CURVES FOR ALL LEAD TEMP. BELOW 75°C.

FIGURE 6 (B)

FIGURE 6 (C)

Thermal Considerations:

- The derating curve of figure 5 may be used for initial design work.
- 2. Use the curves of figure 6 to study the voltage / current / temperature parameters. These curves are helpful in determining the rectifier capability when connected to a tie point whose temperature is influenced by other heat producing components. To use these curves, add the reverse power dissipation from figure 6 (A) or (B) to the forward power dissipation from figure 6 (C) then go to figure 6 (D) to find the maximum allowable tie point temperature.
- 3. The heat sink design (tie point) must be designed to keep the temperature at this point below that shown on the figure 6 (D) curve. Thermal runaway is entirely possible on marginal designs due to the inherently large reverse leakage of Schottky barrier rectifiers and the fact that reverse power multiplies about 1.32 times for each 5° C of temperature increase.
- 4. The curves of figure 6 (D) were based on full rated reverse bias voltage. Slightly higher tie point temperatures can be tolerated at lower voltages. We recommend that all designs be verified at an ambient temperature at least 10° C higher than the maximum at which the equipment will ever have to operate.
- If the application is such that DC reverse bias is applied nearly 100% of the time, all temperature points on curve 6 (D) should be reduced 13° C.
- These thermal resistances apply: R_e JL (measured 1/32" from epoxy) = 7° C/W and the lead = 25° C/W per inch when equal heatsinking is applied to each lead.

VARO SEMICONDUCTOR, INC. RESERVES THE RIGHT TO MAKE CHANGES IN THESE SPECIFICATIONS AT ANY TIME AND WITHOUT NOTICE, IN ORDER TO SUPPLY THE BEST POSSIBLE PRODUCT.

©1975, VARO SEMICONDUCTOR, INC. PRINTED IN U.S.A.

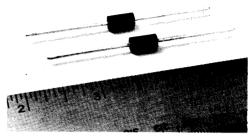
SCHOTTKY

VSK520, VSK530

5 AMP SCHOTTKY BARRIER RECTIFIERS

INDEG Industrie Elektronik Gesellschaft für Beratung und Vertrieb mbH Technisches Büro 7032 SINDELFINGEN 1, Vaihinger Str. 23

Telefon (07031)

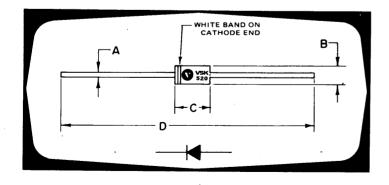

<875052>

20 VOLT AND 30 VOLT VRRM

.380 VOLT vF AT iF = 5.0 AMP

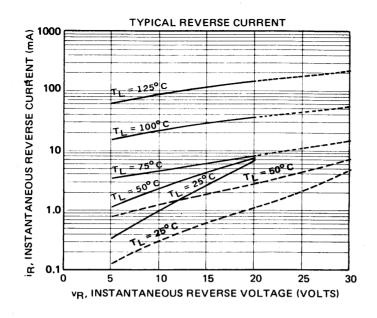
VERY FAST RECOVERY TIME

MINIMUM SIZED, LOW COST EPOXY ENCAPSULATION



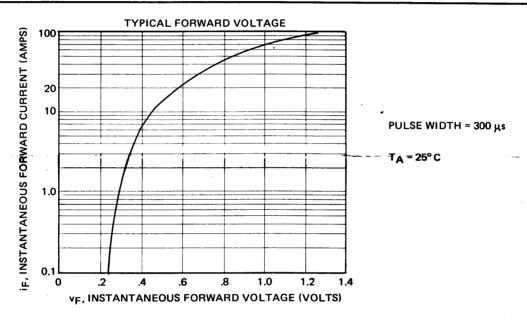
MAXIMUM RATINGS (At T _A = 25°C unless otherwise noted)	SYMBOL	VSK520	VSK530	UNITS
DC Blocking Voltage	V _{RM}			
Working Peak Reverse Voltage	V _{RWM}	20	30	Volts
Peak Repetitive Reverse Voltage	V _{RRM}	•		
RMS Reverse Voltage	V _{R(RMS)}	14	21	Volts
Average Rectified Forward Current (Fig. 5 & 6)	lo	5.0		Amps
Ambient Temp. @ Rated V _{RM} , R _{eJA} ≤16° C/W	TA	65	60	°C
Peak Surge Current (non-rep), 300 µs Pulse Width (Fig.4)	1 _{FSM}	500		Amps
Peak Surge Current (non-rep), ½ cycle, 60Hz (Fig.4)	I _{FSM}	250		Amps
Operating Junction Temperature	TJ	_65 to	+125*	°C
Storage Temperature	T _{STG}	-65 to	+150	°C

*VRM ≤ 0.1 VRM Max, ReJA ≥ 12° C/W

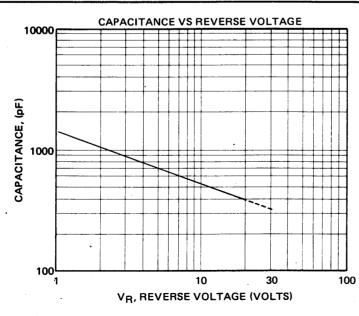

ELECTRICAL CHARACTERISTICS (At T _A = 25°C unless otherwise noted)		I CAMBIN I		VSK530	UNITS
Maximum Instantaneous Forw	ard Voltage Drop (1)	٧F			
See Fig. 2 for Typical v _F	iF= 3.0 Amps		.35	0	
-	iF= 5.0 Amps	-	.38	0	Volts
	iF=15.0 Amps		.52	0	
Maximum Instantaneous Rever	se Current				+ -
at Rated V _{RM} (1)		i _R			
See Fig. 1 for Typical in	T _L =25° C		10)	
	T _L =100° C		. 75	j	mA

(1) Pulse Test: Pulse Width = 300 µs, Duty Cycle = 2%

LTR.	INCHES	MILLIMETERS
A	.048052 Dia-	1,22-1,32 Dia.
В	.20 Dia.	5,08 Dia.
C	.38	9,65
D	2.75	69,85



VSK520


PULSE WIDTH = 300 дs

T_L = LEAD TEMP. MEASURED .03" — .79mm FROM RECT. BODY WITH 40 GAUGE THERMOCOUPLE

FIGURE 1

FIGURE 2

VSK520

 $T_A = 25^{\circ} C$

TEST FREQ. = 100 KHz

The current flow in a Schottky barrier rectifier is due to majority carrier conduction and is not affected by reverse recovery transients due to stored charge and minority carrier injection as in conventional PN diodes.

The Schottky barrier rectifier may be considered for purposes of circuit analysis, as an ideal diode in parallel with a variable capacitance equal in value to the junction capacitance. See Figure 3.

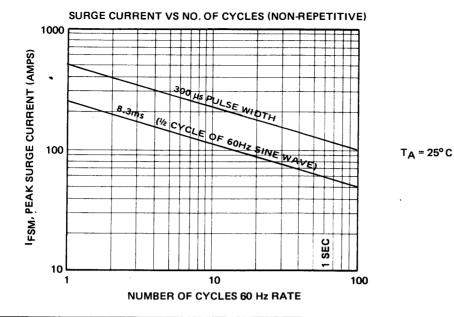
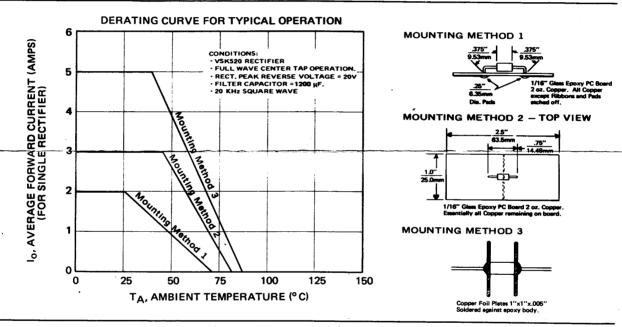
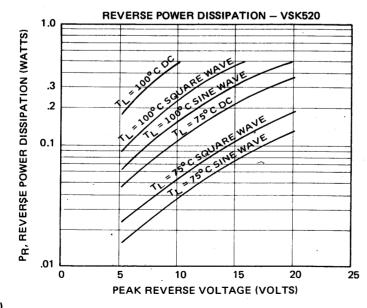
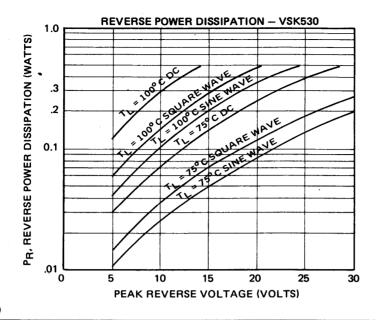
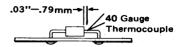




FIGURE 4

FIGURE 5

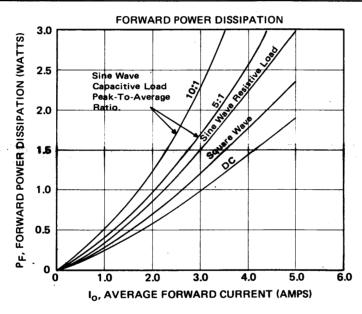



.03"-.79mm 40 Gauge Thermocouple

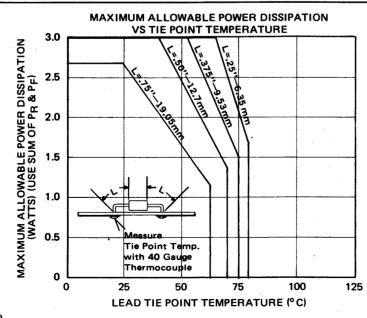
REVERSE POWER MULTIPLIES 1.32× FOR EACH 5° C TEMP. INCREASE

USE THIS MULTIPLIER FOR INTERPOLATION BETWEEN CURVES SHOWN HERE.

USE 75°C CURVES FOR ALL LEAD TEMP. BELOW 75°C.



REVERSE POWER MULTIPLIES 1.32× FOR EACH 5°C TEMP. INCREASE


USE THIS MULTIPLIER FOR INTERPOLATION BETWEEN CURVES SHOWN HERE.

USE 75°C CURVES FOR ALL LEAD TEMP. BELOW, 75°C.

FIGURE 6 (B)

FIGURE 6 (C)

Thermal Considerations:

- 1. The derating curve of figure 5 may be used for initial design work.
- 2. Use the curves of figure 6 to study the voltage / current / temperature parameters. These curves are helpful in determining the rectifier capability when connected to a tie point whose temperature is influenced by other heat producing components. To use these curves, add the reverse power dissipation from figure 6 (A) or (B) to the forward power dissipation from figure 6 (C) then go to figure 6 (D) to find the maximum allowable tie point temperature.
- 3. The heat sink design (tie point) must be designed to keep the temperature at this point below that shown on the figure 6 (D) curve. Thermal runaway is entirely possible on marginal designs due to the inherently large reverse leakage of Schottky barrier rectifiers and the fact that reverse power multiplies about 1.32 times for each 5° C of temperature increase.
- 4. The curves of figure 6 (D) were based on full rated reverse bias voltage. Slightly higher tie point temperatures can be tolerated at lower voltages. We recommend that all designs be verified at an ambient temperature at least 10° C higher than the maximum at which the equipment will ever have to operate.
- If the application is such that DC reverse bias is applied nearly 100% of the time, all temperature points on curve 6 (D) should be reduced 13° C.
- 6. These thermal resistances apply: Re JL (measured 1/32" from epoxy) = 6° C/W and the lead = 25° C/W per inch when equal heatsinking is applied to each lead.

VARO SEMICONDUCTOR, INC. RESERVES THE RIGHT TO MAKE CHANGES IN THESE SPECIFICATIONS AT ANY TIME AND WITHOUT NOTICE, IN ORDER TO SUPPLY THE BEST POSSIBLE PRODUCT.

©1975, VARO SEMICONDUCTOR, INC.
PRINTED IN U.S.A.