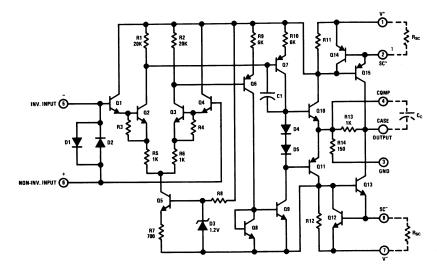
Operational Amplifiers

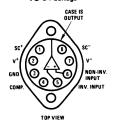
LH0061/LH0061C 0.5 amp wide band operational amplifier

general description

The LH0061/LH0061C is a wide band, high speed, operational amplifier capable of supplying currents in excess of 0.5 ampere at voltage levels of ±12V. Output short circuit protection is set by external resistors, and compensation is accomplished with a single external capacitor. With a suitable heat sink the device is rated at 20 Watts.


The wide bandwidth and high output power capabilities of the LH0061/LH0061C make it ideal for such applications as AC servos, deflection yoke drivers, capstan drivers, and audio amplifiers. The

LH0061 is guaranteed over the temperature range -55°C to +125°C; whereas, the LH0061C is guaranteed from -25°C to +85°C.


features

 Output current 	0.5 Amp
 Wide large signal bandwidth 	1 MHz
■ High slew rate	75 V/μs
■ Low standby power	240 mW
■ Low input current	300 nA Max

schematic and connection diagrams

TO-3 Package

Order Numbers:

LH0061K (-55°C to +125°C) LH0061CK (-25°C to +85°C) See Package 19 2

absolute maximum ratings

Supply Voltage
Power Dissipation
Differential Input Current (Note 2)
Input Voltage (Note 3)
Peak Output Current
Output Short Circuit Duration (Note 4)
Operating Temperature Range LH0061
LH0061C

Storage Temperature Range Lead Temperature (Soldering, 10 sec) ±18V See Curve ±10 mA ±15V

Continuous -55°C to +125°C -25°C to +85°C

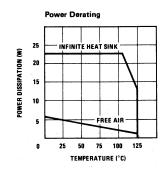
-65°C to +150°C 300°C

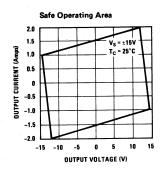
dc electrical characteristics (Note 1)

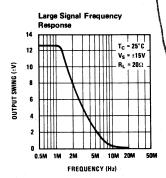
PARAMETER	CONDITIONS	LIMITS						
		LH0061			LH0061C			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$R_S \le 10 \text{ k}\Omega$, $T_C = 25^{\circ}\text{C}$, $V_S = \pm 15\text{V}$		1.0	4.0		3.0	. 10	mV
	$R_S \le 10 \text{ k}\Omega$, $V_S = \pm 15 \text{V}$			6.0			15	mV
Voltage Drift with Temperature	$R_S \le 10 \text{ k}\Omega$		5			5		μV/°C
Offset Voltage Change with Output Power			5			5		μV/watt
Input Offset Current	T _C = 25°C		30	100		50	200	nA
·	-			300			500	nA
Offset Current Drift with Temperature			1			1		nA/°C
Input Bias Current	T _C = 25°C		100	300		200	500	nΑ
				1.0			1.0	μΑ
Input Resistance	T _C = 25°C	0.3	1.0		0.3	1.0		МΩ
Input Capacitance			3			3		pF
Common Mode Rejection Ratio	$R_S \le 10 \text{ k}\Omega$, $\Delta V_{CM} = \pm 10 \text{V}$	70	90		60	80		dB
Input Voltage Range	V _S = ±15V	±11			±11			V
Power Supply Rejection Ratio	${ m R_S} \le 10~{ m k}\Omega$, $\Delta{ m V_S} = \pm 10{ m V}$	70	80		50	70		dB
Voltage Gain	$V_S = \pm 15V$, $V_O = \pm 10V$							
	$R_L = 1 k\Omega$, $T_C = 25^{\circ}C$	50	100	l	25	50		V/mV
	$V_S = \pm 15V$, $V_O = \pm 10V$ $R_1 = 20\Omega$	5			2.5			V/mV
Output Voltage Swing	$V_S = \pm 15V$, $R_L = 20\Omega$	±10	±12		±10	±12		v
Output Short Circuit Current	$V_S = \pm 15V$, $T_C = 25^{\circ}C$, $R_{SC} = 1.0\Omega$		600			600		mA
Power Supply Current	$V_S = \pm 15V$, $V_{OUT} = 0$		7	10		10	15	mA
	•		1	1		200	450	
Power Consumption	$V_S = \pm 15V, V_{OUT} = 0$	i	210	300	L	300	450	mW

ac electrical characteristics $(T_c = 25^{\circ}C, V_S = \pm 15V, C_C = 3000 \text{ pF})$

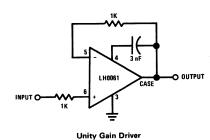
Slew Rate	$A_V = +1$, $R_L = 100\Omega$	50	70		50	70	'	V/μs
Power Bandwidth	R _L = 100Ω		1			1		MHz
Small Signal Transient Response			30			30		ns
Small Signal Overshoot			5	20		10	30	%
Settling Time (0.1%)	ΔV _{IN} = 10V, A _V = +1		0.8			0.8		μs
Overload Recovery Time			1			1		μs
Harmonic Distortion	f = 1 kHz, P _O = 0.5W		0.2			0.2		%

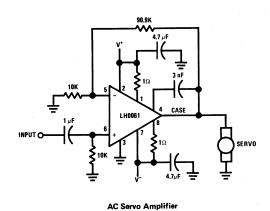

Note 1: Specifications apply for $\pm 5V \le V_S \le \pm 18V$, $C_C = 3000$ pF, and $-55^{\circ}C \le T_C \le +125^{\circ}C$ for the LH0061K and $-25^{\circ}C \le T_C \le +85^{\circ}C$ for the LH0061CK. Typical values are for $T_C = 25^{\circ}C$.


Note 2: The inputs are shunted with back-to-back diodes for overvoltage protection. Excessive current will flow if a differential voltage in excess of 1V is applied between the inputs without limiting resistors.


Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

Note 4: Rating applies as long as package power rating is not exceeded.


typical performance characteristics



typical applications

