MITSUBISHI LINEAR ICs M5222L, P, FP

VOLTAGE CONTROLLED AMPLIFIER(VCA)FOR USE IN A LOW-VOLTAGE ELECTRONIC VOLUME CONTROL

ESCRIPTION

SP WIN WARANT ...

The M5222 is a semiconductor integrated cirucit consisting a dual voltage controlled amplifier (VCA) designed for e in an electronic volume control. Operable over a wide pply voltage range from 1.8V to 20V, the M5222 is availble in a compact 8-pin SIP, DIP or FP. The two built-in mannels and especially the attenuation characteristics that ange logarithmically with respect to the external DC con-I voltage (a response equivalent to the A-curve volume) ermit the M5222 to be applied widely in portable stereo idio/cassette recorders, car stereo system, and electronic usical instruments.

EATURES

Operable at low voltagesVcc=1.8~20V Two built-in channelsSimultaneous control of both channels is

possible with V_C (control) at Pin (5)

Logarithmic response VCA

.....Logarithmic response equivalent to A-curve volume

Wide attenuation range

High maximum input voltage

......Vi=1.0Vrms(typ.)(@V_{CC}=3V)

Similar characteristics between the two channels

PPLICATION

an electronic volume control in portable stereo radio/castte recorders, car stereos, electronic musical instruments. CAs.

8-pin molded plastic SIP

8-pin molded plastic FP (MINI FLAT)

8-pin molded plastic DIP

e: 1. R_I is used to convert input voltage to current.

2. Ro is an output resistor used to convert the currentoutput signal to voltage. Connect this output with COM pin (3) to fix the

3. The COM pin is used for making a 1/2pint supply voltage within the IC. It is used in connecting R_0 and in V_c control.

SV

TYP

VOLTAGE CONTROLLED AMPLIFIER(VCA)FOR USE IN A LOW-VOLTAGE ELECTRONIC VOLUME CONTROL

ABSOLUTE MAXIMUM RATINGS (Ta=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit	
Vcc	Supply voltage		20	V.	
Pd	Power dissipation		800(SIP)/625(DIP)/440(FP)	mW	
Kθ	Thermal derating	T _a ≧25℃	8(SIP)/6.25(DIP)/4.4(FP)	mW/℃	
Topr	Operating temperature range	-	-20~+75	C	
Tsta	Storage temperature range	•	-55~+125	Ϋ́	

ELECTRICAL CHARACTERISTICS ($T_a=25^{\circ}C$, unless otherwise noted)

	Patameter Circuit current	Tester	ditions			Limits		11-14
Symbol		Test conditions V _{cc} V _i =0, V _c =0 3V			Min 2.5	Тур 3.6	Max 5, 5	
lcc								mA
V _i M1	Maximum input voltage	f=1kHz	R _i ==10kΩ R _O ==20kΩ	ЗV	0.7	1.0		Vrm
V _i M2	Maximum input voltage	THD=1%	$R_1 = 50 k \Omega$ $R_0 = 100 k \Omega$	9,V	2.3	3.4		Vrm
ATTM	Maximum attenuation	$R_i = 10k\Omega, R_0 = 20k$ $V_c = -270mV$	3V	80	90		dB	
ATT ₀₁	Attenuation error	f=1kHz	$R_1 = 10$ kΩ $R_0 = 20$ kΩ	3V	-4.4	-1.4	+1.6	dB
ATT ₀₂	Attenuation error	V _c =0 Vj=0dBm	$R_{I} = 50 k \Omega$ $R_{O} = 100 k \Omega$	9V	-5.0	-2.0	+1.0	dB
ΔΑΤΤ	Attenuation deviation between chan- nels	$f=1 \text{ kHz}, V_{\text{C}}=0, V_{\text{I}}=0$ $R_{\text{I}}=10 \text{ k} \Omega, R_{\text{O}}=20 \text{ k}$	3V		0, 1	3.0	dB	
V _{NO1}	Noise output voltage	$V_{\rm C} = 0$ (ATT=-1.4 R _o =20k Ω , BW=20	зv		30	60	μ۷π	
V _{NO2}	Noise output voltage	$ATT = -40 dB, R_{I} = R_{O} = 20 k\Omega, BW = 20 k\Omega$	зv		5		μVn	

TEST CIRCUIT

MITSUBISHI LINEAR ICs M5222L, P, FP

VOLTAGE CONTROLLED AMPLIFIER(VCA)FOR USE IN A LOW-VOLTAGE ELECTRONIC VOLUME CONTROL

SWITCH MATRIX

Parameter		SW1	SW ₂	SW₃	SW₄	SW5	SW ₆	-SW7	SW8
		2	1	OFF	2	1	1/2	2	2
Vim	1	1	1	ON	2	1	1/2	1	1
	2	1	2	ON	2	2	1/2	1	1
ATTM		1	1	ON	1	1	1/2	2	2
ATT	01	1	1	ON	2	1	1/2	2	2
	02	1	2	ON	2	2	1/2	2	2
V _{NO}	1	2	1	ON	2	1	1/2	1	1.
	2	2	-1	ON	1	1	1/2	1	1

(Note)1. Use 0dB amplification when measuring ViM

2. Use 40dB amplification when measuring $V_{\rm NO}$

3. V_{NO}=measurement value/100(40dB) [µVrms]

TYPICAL CHARACTERISTICS

CIRCUIT CURRENT VS. SUPPLY VOLTAGE

ATTENUATION VS. CONTROL VOLTAGE

ATTENUATION VS. SUPPLY VOLTAGE

MITSUBISHI LINEAR ICs M5222L, P, FP

VOLTAGE CONTROLLED AMPLIFIER(VCA)FOR USE IN A LOW-VOLTAGE ELECTRONIC VOLUME CONTROL

CONTROL VOLTAGE VS. SUPPLY VOLTAGE

 $\psi^{(j,1)}$

SUPPLY VOLTAGE VCC (V)

INPUT VOLTAGE Vi (Vrms)

ATTENUATION VS. FREQUENCY

NOISE OUTPUT VOLTAGE VS. ATTENUATION

ATTENUATION VS. AMBIENT TEMPERATURE

BA The IC. the

trol

1

Bas and App inpu inpu and by r com nec nal curr **cuit** con go obta TI of th

joini ly-c and Basi The trol COI CO and the char Le

the

is st

MITSUBISHI LINEAR ICS M5222L, P, FP

VOLTAGE CONTROLLED AMPLIFIER(VCA)FOR USE IN A LOW-VOLTAGE ELECTRONIC VOLUME CONTROL

BASIC PRINCIPLE OF OPERATION

The M5222 is a current input, current output type of VCA IC. This amplifier uses the principle by which changing the balance of the differential circuit with external control voltage V_C will change gm. The circuit is also called

a variable transconductance (variable gm) OP amp. The basic principle of operation will be simply explained below.

Basic voltage-current conversion mechanism for input and output

Applying the input signal V_i which flows through external input resistor R_i results in a change to a current signal at input terminal IN. The V_{BE} level shift of R₁, R₂, Q₅, Q₁, and Q₂ will cause input pin IN to become ground level by means of V_{CC}/2 in terms of direct current and to become ground level by means of the externally-conmected capacitor in terms of alternating current. The signal input in this way will be sent to the output pin as a current signal by the current mirror and differential circuit. By taking this current signal through the externallyconnected output resistor (load resistor), the signal can go through a current-to-voltage conversion and be abtained as output signal V₀.

The output transistors combine the currents by means of the joined PNP and NPN collector circuits. Basically, the DC potential floats and is not determined in this joining of currents. This is why one end of external-transition connected resistor R_0 is connected to the $V_{CC}/2$ pin and the DC level ($V_{CC}/2$) at the time of no signal is set.

Basic mechanism of attenuation

The output is controlled by means of changing the control voltage applied to the V_C pin with respect to the COM pin (V_{CC}/2 pin). By applying voltage from the COM pin to the base of one side of a differential circuit and applying voltage from the V_C pin to the other base, the current distribution of the differential circuit is changed and the gain of this circuit is changed.

Let us first consider when V_c equals zero (V_c -COM shorted). Input signal V_i is converted to current by in-

put resistor R_1 and the i currents $(2i = V_i/R_i)$ flow through the collectors of Q_1 and Q_2 . When the current flowing in Q_i becomes i+i, the overall emitter current of the differential circuit consisting of Q_{10} and Q_{11} will also be determined as 1+i by means of current mirror (2). Since the base potential of Q_{10} and Q_{11} is the same, the curret will be divided equally and current (1+i)/2 will flow in each of Q_{10} and Q_{11} . The current of current mirror (4) will also be determined as (1+i)/2 because of this.

Since the current of current mirror (1) is determined as 2I by the current flowing in Q_3 and Q_4 , the total of the current flowing in Q_2 and the current flowing in differential circuit Q_8 , Q_9 will also be 2I. The current from Q_2 which will become 1+i flows here and as a result, the overall emitter current of the differential circuit will be 2I - (1+i) = 1 - i. This current is devided the same way as in the differential circuit consisting of Q_{10} and Q_{11} with current (1-i)/2 flowing in each of Q_8 and Q_9 . From this, the current of current mirror (3) is determined as (1-i)/2and the current of current mirror (5) becomes (1+i)/2.

Now, current (I-i)/2 from current mirror (4) flows in transistor Q_{12} of the output stage. Since the current flowing in transistor Q_{13} from current mirror (5) is held at (I-i)/2, connecting output resistor R_0 between the output pin and the COM pin will result in current i flowing through R_0 and providing a voltage signal $V_0=i^{-}R_0$.

Here, by selecting $R_0=2R_i$, $V_0=i\cdot R_0=2i\cdot R_i=V_i$ and the amplifier will have a gain of 1.

Next, we will consider case of when control voltage V_C is applied with regard to the selection of this resistance.

MITSUBISHI LINEAR IG M5222L, P, FP

VOLTAGE CONTROLLED AMPLIFIER(VCA)FOR US

Fig. 2 DIFFERENTIAL CIRCUIT

The values of V_{BE} of the differential stage will be as follows:

$$\begin{split} & V_{BE8} \div \frac{kT}{q} ln\left(\frac{l_{C8}}{l_{S}}\right) \\ & V_{BE9} \div \frac{kT}{q} ln\left(\frac{l_{C9}}{l_{S}}\right) \\ & V_{BE10} \div \frac{kT}{q} ln\left(\frac{l_{C10}}{l_{S}}\right) \\ & V_{BE11} \div \frac{kT}{q} ln\left(\frac{l_{C11}}{l_{S}}\right) \end{split}$$

where, /Is: the saturation current

k: the Boltzmann constant

q: the amount of electric charge on the electrons

T: the absolute temperature

From this,

$$-V_{C} = V_{BE8} - V_{BE9} = \frac{kT}{q} ln \frac{l_{C8}}{l_{C9}}$$
$$-V_{C} = V_{BE11} - V_{BE10} = \frac{kT}{q} ln \frac{l_{C11}}{l_{C10}}$$

Here,

 $I_{C8}+I_{C9} = I - i$ $I_{C10}+I_{C11} = I - i$ $-V_{C} = \frac{kT}{q} ln \frac{I_{C8}}{I - i - I_{C8}}$

$$-V_{c} = \frac{kT}{q} \ln \frac{I_{c11}}{I - i - I_{c11}}$$

The current flowing through Q_8 and Q_{11} will be

$$I_{C8} = \frac{(1-i)\exp(-\frac{q}{kT}V_{C})}{1+\exp(-\frac{q}{kT}V_{C})} = \frac{1-i}{1+\exp(-\frac{q}{kT}V_{C})}$$
$$I_{C11} = \frac{(1+i)\exp(-\frac{q}{kT}V_{C})}{1+\exp(-\frac{q}{kT}V_{C})} = \frac{1-i}{1+\exp(-\frac{q}{kT}V_{C})}$$

Current I_{C11} is the current of current mirror (4), and I_{C8} will be the same as the current of current mirror (5).

At this time, the current that will flow through the output pin will be the same as that in the explanation when V_C was equal to zero, and is expressed as

As in the graph below, the attenuation will change logarithmically with respect to the change of V_C .

ATTENUATION VS. CONTROL VOLTAGE

Setting and connection of input/output resistance

As explained above, the input signal is converted to **c** rent, but since the transistor of the input stage is **bias** at a fixed current of $I=76 \,\mu$ A, the maximum value of input current is determined at the least upper bound **c** (FIG.3). Accordingly, when a large signal is input **b** necessary to select a large input/output resistance decrease the input current. Note that increasing **the** sistance will also increase the noise distortion factor, the value of the setting should be made to suit the **p** ticular application.

Fig. 3 MAXIMUM CURRENT SIGNAL

MITSUBISHI LINEAR IC. M5222L, P, FP

VOLTAGE CONTROLLED AMPLIFIER(VCA)FOR USE IN A LOW-VOLTAGE ELECTRONIC VOLUME CONTROL

The M5222 has a floating-type output stage with the collectors of Q_{12} and Q_{13} joined as shown in FIG. 4. Here, the difference of the combined currents will become the output current that will flow through the load. Note that it is necessary to set the DC potential of this output pin by externally-connected resistor R_0 and that it is generally DC-connected to the $V_{CC}/2$ pin (or to pin (3)).

In terms of AC, it is necessary to set the output pin to ground level so that capacitor C is required. Since the voltage gain (amount of attenuation) is determined by R_0 , the value of the input impedance connected to the next stage is sometimes affected. (Placing Z_1 in parallel with R_0 will lower the impedance.) Generally, a buffer amplifier composed of a transistor or OP amp connected.

Fig. 4 EQUIVALENT CIRCUIT OF OUTPUT STAGE

APPLICATION EXAMPLES

MITSUBISHI LINEAR ICS M5222L, P, FP

VOLTAGE CONTROLLED AMPLIFIER(VCA)FOR USE IN A LOW-VOLTAGE ELECTRONIC VOLUME CONTROL

(2) PROGRAMMABLE ATTENUATION CIRCUIT

ATTENUATION VS. AMBIENT TEMPERATURE (TEMPERATURE COMPENSATION)

(3) CONTROL APPLICATION WITH EXISTING VOLTAGE CONTROL

AMBIENT TEMPERATURE Ta (°C)

Unit Resistance : Ω Capacitance : F

PRINTED CIRCUIT BOARD FOR CIRCUIT TESTING

PRINTED CIRCUIT BOARD WIRING DIAGRAM (PARTS SIDE) (COPPER FOIL SIDE) 0 0 GND Vcc **IN1** COM 000 O 3.3 µ 10*µ* IN2 R ╉ 0+H-0 OUT2 H. -00---------0 Q 00 **≩ R**o 00 O OUTI Y 00000000 ç 1 8 ∦ R₀ 3.3μ OUT R δ+¹⁰μ 0 4 IN2 0.01 µ -FI ©OUT2 0 -0 0 œ⊢ ò 22 µ GND Ó Ø . ∰100 μ] COM Vc M5222L Ο 0 GND

