

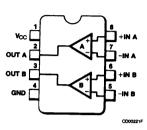
μA9637A Dual Differential Line Receiver

Linear Division Interface Products

Description

The μ A9637A is a Schottky dual differential line receiver which has been specifically designed to satisfy the requirements of EIA Standards RS-422 and RS-423. In addition, the μ A9637A satisfies the requirements of MIL-STD 188-114 and is compatible with the International Standard CCITT recommendations. The μ A9637A is suitable for use as a line receiver in digital data systems, using either single ended or differential, unipolar or bipolar transmission. It requires a single 5.0 V power supply and has Schottky TTL compatible outputs. The μ A9637A has an operational input common mode range of \pm 7.0 V either differentially or to ground.

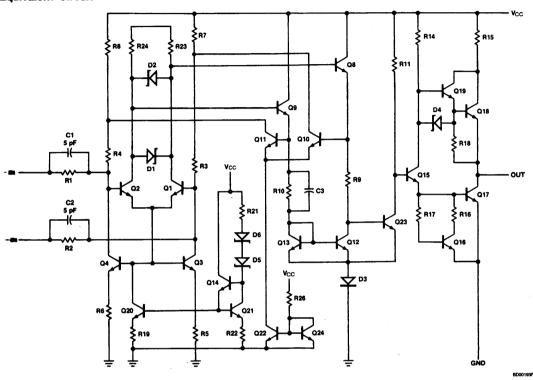
- Dual Channels
- Single 5.0 V Supply
- Satisfies EIA Standards RS-422 And RS-423
- Built-in ± 35 mV Hysteresis
- High Common Mode Range
- High Input Impedance
- TTL Compatible Output
- Schottky Technology
- Extended Temperature Range


Absolute Maximum Ratings Storage Temperature Range

Ceramic DIP	-65°C to +175°C
Molded DIP	-65°C to +150°C
Operating Temperature Range	
Extended (µA9637AM)	-55°C to +125°C
Commercial (µA9637AC)	0°C to +70°C
Lead Temperature	
Ceramic DIP (soldering, 30 s)	300°C
Molded DIP and SO Package	
(soldering, 10 s)	265°C
Internal Power Dissipation ^{1, 2}	•
8L-Ceramic DIP	1.30 W
8L-Molded DIP	0.93 W
SO-8	0.81 W
V _{CC} Lead Potential to Ground	-0.5 V to 7.0 V
Input Potential to Ground	± 15 V
Differential Input Voltage	± 15 V
Output Potential to Ground	-0.5 V to +5.5 V
Output Sink Current	50 mA

Notes

- 1. $T_{J \text{ Max}} = 175^{\circ}\text{C}$ for the Ceramic DIP, and 150°C for the Molded DIP.
- Ratings apply to ambient temperature at 25°C. Above this temperature, derate the 8L-Ceramic DIP at 8.7 mW/°C, the 8L-Molded DIP at 7.5 mW/°C, and the SO-8 at 6.5 mW/°C.


Connection Diagram 8-Lead DIP and SO-8 Package (Top View)

Order Information Device Code Package Code Package D

Device Code	Package Code	Package Description
μA9637ARM	6T	Ceramic DIP
μA9637ARC	6T	Ceramic DIP
μA9637ATC	9T	Molded DIP
μA9637ASC	KC	Molded Surface Mount

Equivalent Circuit

Recommended Operating Conditions

	Characteristic	μ Α 9637 Α			μ Α9637A C			
Symbol		Min	Тур	Max	Min	Тур	Max	Unit
V _∞	Supply Voltage	4.5	5.0	5.5	4.75	5.0	5.25	V
TA	Operating Temperature	-55	25	125	0	25	70	°C .

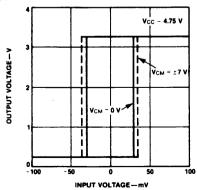
μ**A9637A**

μ**Α9637Α** Electrical Characteristics Over recommended operating temperature and supply voltage ranges, unless otherwise specified.

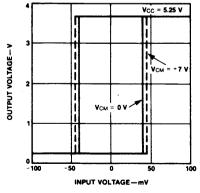
DC Characteristics

Symbol	Characteristic	Condition ¹	Min	Typ ²	Max	Unit
V _{TH}	Differential Input Threshold Voltage ³	-7.0 V ≤ V _{CM} ≤ +7.0 V	-0.2		+0.2	٧
V _{TH(R)}	Differential Input Threshold Voltage ⁴	-7.0 V ≤ V _{CM} ≤ +7.0 V	-0.4		+0.4	٧
l _i	Input Current ⁵	$V_{I} = 10 \text{ V}, 0 \text{ V} \leq V_{CC} \leq +5.5 \text{ V}$		1.1	3.25	mA
		$V_{I} = -10 \text{ V}, 0 \text{ V} \leq V_{CC} \leq +5.5 \text{ V}$	-3.25	-1.6		
'V _{OL}	Output Voltage LOW	I _{OL} = 20 mA, V _{CC} = Min		0.35	0.5	٧
V _{OH}	Output Voltage HIGH	I _{OH} = -1.0 mA, V _{CC} = Min	2.5	3.5		٧
los	Output Short Circuit Current ⁶	V _O = 0 V, V _{CC} = Max	-40	-75	-100	mA
Icc	Supply Current	$V_{CC} = Max, V_{I+} = 0.5 \text{ V},$ $V_{I-} = GND$		35	50	mA
V _{HYST}	Input Hysteresis	V _{CM} = ±7.0 V (See Curves)		70		mV

AC Characteristics $V_{CC} = 5.0 \text{ V}, T_A = 25^{\circ}\text{C}$

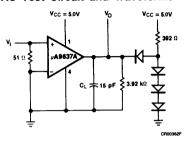

Symbol	Characteristic	Condition	Min	Тур	Max	Unit
t _{PLH}	Propagation Delay Time Low to High	See AC Test Circuit		15	25	ns
t _{PHL}	Propagation Delay Time High to Low	See AC Test Circuit		13	25	ns

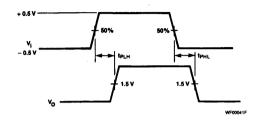
9-120


Notes

- 1. Use Min/Max values specified in recommended operating conditions.
- 2. Typical limits are at V_{CC} = 5.0 V and T_A = 25°C. 3. V_{DIFF} (Differential Input Voltage) = (V_I+) (V_I-). V_{CM} (Common Mode Input Voltage) = V_i + or V_i -.
- 4. 500 Ω ±1% in series with inputs.
 - 5. The input not under test is tied to ground.
 - 6. Only one output should be shorted at a time.

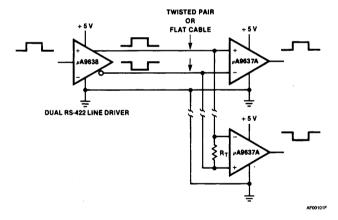
Typical Input/Output Transfer Characteristics




PC01962F

PC01972F

AC Test Circuit and Waveforms


Notes

C_L includes jig and probe capacitance. **All** diodes are FD700 or equivalent.

Amplitude: 1.0 V Offset: 0.5 V Pulse Width: 100 ns PRR: 5.0 MHz $t_f = t_f \le 5.0$ ns

Typical Applications

RS-422 System Application (FIPS 1020) Differential Simplex Bus Transmission

Notes

 $R_T \ge 50 \Omega$ for RS-422 operation

 \textbf{R}_{T} combined with input impedance of receivers must be greater than 90 $\Omega.$